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Active Inference is a way of understanding sentient be hav ior. The very 

fact that you are reading  these lines means that you are engaging in Active 

Inference— namely, actively sampling the world—in a par tic u lar way— 

because you believe you  will learn something. You are palpating this page 

with your eyes simply  because this is the kind of action that  will resolve uncer-

tainty about what you  will see next and— indeed— what  these words convey. 

In short, Active Inference puts the action into perception, whereby perception 

is treated as perceptual inference or hypothesis testing. Active Inference goes 

even further and considers planning as inference— that is, inferring what you 

would do next to resolve uncertainty about your lived world.

To illustrate the simplicity of Active Inference— and what we are try-

ing to explain— place your fingertips  gently on your leg. Keep them  there 

motionless for a second or two. Now, does your leg feel rough or smooth? 

If you had to move your fin gers to evince a feeling of roughness or smooth-

ness, you have discovered a fundament of Active Inference. To feel is to 

palpate. To see is to look. To hear is to listen. This palpation does not neces-

sarily have to be overt—we can act covertly by directing our attention to 

this or that. In short, we are not simply trying to make sense of our sensa-

tions; we have to actively create our sensorium. In what follows, we  will 

see why this has to be the case and why every thing that we perceive, do, or 

plan is in the compass of one existential imperative— self- evidencing.

Active Inference is not just about reading or epistemic foraging. It is, on 

one view, something that all creatures and particles do, in virtue of their 

existence. This might sound like a strong claim; however, it speaks to the 

fact that Active Inference inherits from a  free energy princi ple that equates 

existence with self- evidencing and self- evidencing with an enactive sort of 

Preface

Karl Friston

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



viii Preface

inference. However, this book is not concerned with the physics of sentient 

systems. Its focus is on the implications of this physics for understanding 

how the brain works.

This understanding is not an easy business, as witnessed by millennia of 

natu ral philosophy and centuries of neuroscience. Although one can find 

the roots of Active Inference in first princi ple accounts of self- organized 

be hav ior (i.e., variational princi ples akin to Hamilton’s princi ple of stationary 

action), first princi ples do not help very much when asking how a par tic u lar 

brain works and how it differs from another brain. For example, committing 

to the theory of evolution by natu ral se lection does not help in the slightest 

when it comes to understanding why I have two eyes or speak French. This 

book is about using princi ples to scaffold key questions in neuroscience and 

artificial intelligence. To do this, we have to move beyond princi ples and get 

to grips with the mechanics to which the princi ples apply.

As such, Active Inference— and its accompanying Bayesian mechanics—

is  there to frame questions about how we perceive, plan, and act. Crucially, 

it does not aim to replace other frameworks, such as behavioral psy chol ogy, 

decision theory, and reinforcement learning. Rather, it hopes to embrace 

all  those approaches that have proven so successful within a unified frame-

work. In what follows, we  will pay special attention to linking key con-

structs from psy chol ogy, cognitive neuroscience, enactivism, ethology, and 

so on to the calculus of belief updating in Active Inference— and its associ-

ated pro cess theories.

By pro cess theories, we refer to theories about how belief updating is real-

ized by neuronal (and other biophysical) pro cesses in the embodied brain 

and beyond. Work to date in Active Inference offers a fairly straightforward 

set of computational architectures and simulation tools to both model vari-

ous aspects of a functioning brain and enable  people to test hypotheses 

about dif fer ent computational architectures. However,  these tools only solve 

half the prob lem. At the heart of Active Inference lies a generative model— 

namely, a probabilistic repre sen ta tion of how unobservable  causes in the 

world out  there generate the observable consequences— our sensations. 

Getting the generative model right—as an apt explanation for the sentient 

be hav ior of any experimental subject or creature—is the big challenge.

This book tries to explain how to meet this challenge. The first part sets 

up the basic ideas and formalisms that are called on in the second part—to 

illustrate how they can be applied in practice. In short, this book is for 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



Preface ix

 people who want to use Active Inference to simulate and model sentient 

be hav ior, in the ser vice of  either scientific inquiry or, possibly, artificial 

intelligence. Thus it focuses on  those ideas and procedures that are nec-

essary to understand and implement an Active Inference scheme without 

getting distracted by the physics of sentient systems on the one hand or 

philosophy on the other.

A Note from Karl Friston

I have a confession to make. I did not write much of this book. Or, more 

precisely, I was not allowed to. This book’s agenda calls for a crisp and clear 

writing style that is beyond me. Although I was allowed to slip in a few of 

my favorite words, what follows is a testament to Thomas and Giovanni, 

their deep understanding of the issues at hand, and, importantly, their 

theory of mind—in all senses.
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Chance  favors the prepared mind.

— Louis Pasteur

1.1 Introduction

This chapter introduces the main question that Active Inference seeks 

to address: How do living organisms persist while engaging in adaptive 

exchanges with their environment? We discuss the motivation for addressing 

this question from a normative perspective, which starts from first princi ples 

and then unpacks their cognitive and biological implications. Furthermore, 

this chapter briefly introduces the structure of the book, including its sub-

division into two parts: the first of which aims to help readers understand 

Active Inference, and the second of which aims to help them use it in their 

own research.

1.2 How Do Living Organisms Persist and Act Adaptively?

Living organisms constantly engage in reciprocal interactions with their 

environment (including other organisms). They emit actions that change 

the environment and receive sensory observations from it, as schematically 

illustrated in figure 1.1.

Living organisms can only maintain their bodily integrity by exerting 

adaptive control over the action- perception loop. This means acting to solicit 

sensory observations that  either correspond to desired outcomes or goals 

(e.g., the sensations that accompany secure nutrients and shelter for  simple 

1 Overview
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4 Chapter 1

organisms, or friends and jobs for more complex ones) or help in making 

sense of the world (e.g., informing the organism about its surroundings).

Engaging in adaptive action- perception loops with the environment 

poses formidable challenges to living organisms. This is largely due to the 

recursive nature of the cycle, where each observation, solicited by the pre-

vious action, changes how we decide on the next action, to solicit the next 

observation. The possibilities for control and adaptation are plentiful, but 

very few are useful. Yet during evolution, living organisms have man-

aged to develop adaptive strategies to face the fundamental challenges of 

existence.  These strategies vary in their level of cognitive sophistication, 

with simpler and more rigid solutions in simpler organisms (e.g., follow-

ing nutrient gradients in bacteria) and more cognitively demanding and 

flexible solutions in more advanced organisms (e.g., planning to achieve 

distal goals in  humans).  These strategies also vary for the timescales at 

which they are selected and operate— ranging from  simple responses to 

environmental threats or morphological adaptations that arise at an evo-

lutionarily timescale, to behavioral patterns established during cultural 

or developmental learning, up to  those requiring cognitive pro cesses that 

operate at comparable timescales to action and perception (e.g., attention 

and memory).

Observation

Action

Figure 1.1
An action- perception cycle reciprocally connecting a creature and its environment. 

The term environment is intentionally generic. In the examples that we discuss, it can 

include the physical world, the body, the social environment, and so on.
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Overview 5

1.3 Active Inference: Be hav ior from First Princi ples

This diversity is a blessing for biology but challenging for formal theories of 

brain and mind. Broadly,  there are two perspectives we could take on this. 

One perspective is that dif fer ent biological adaptations, neural pro cesses 

(e.g., synaptic exchanges and brain networks), and cognitive mechanisms 

(e.g., perception, attention, social interaction) are highly idiosyncratic and 

require dedicated explanations. This would lead to proliferation of theo-

ries in fields like philosophy, psy chol ogy, neuroscience, ethology, biology, 

artificial intelligence, and robotics, with  little hope for their unification. 

Another perspective is that, despite their diverse manifestations, the cen-

tral aspects of be hav ior, cognition, and adaptation in living organisms are 

amenable to a coherent explanation from first princi ples.

 These two possibilities map to two dif fer ent research programs and, to 

some extent, dif fer ent attitudes  toward science: “neats” versus “scruffies” 

(terms due to Roger Shank). Neats always seek unification beyond the (appar-

ent) heterogeneity of brain and mind phenomena. This usually corresponds 

to designing top- down, normative1 models that start from first princi ples and 

try to derive as much as pos si ble about brains and minds. Scruffies instead 

embrace the heterogeneity by focusing on details that demand dedicated 

explanations. This usually corresponds to designing bottom-up models that 

start from data and use what ever works to explain complex phenomena, 

including dif fer ent explanations for dif fer ent phenomena.

Is it pos si ble to explain heterogenous biological and cognitive pheno-

mena from first princi ples, as the neats assume? Is a unified framework to 

understand brain and mind pos si ble?

This book answers  these questions affirmatively and advances Active 

Inference as a normative approach to understand brain and mind. Our 

treatment of Active Inference starts from first princi ples and unpacks their 

cognitive and biological implications.

1.4 Structure of the Book

The book comprises two parts.  These are aimed at readers who want to under-

stand Active Inference (first part) and  those who seek to use it for their own 

research (second part). The first part of the book introduces Active Inference 

both conceptually and formally, contextualizing it within current theories of 

cognition. The goal of this first part is to provide a comprehensive, formal, 
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6 Chapter 1

and self- contained introduction to Active Inference: its main constructs and 

implications for the study of brain and cognition.

The second part of the book illustrates specific examples of computa-

tional models that use Active Inference to explain cognitive phenomena, 

such as perception, attention, memory, and planning. The goal of this sec-

ond part is to help readers both understand existing computational models 

using Active Inference and design novel ones. In short, this book divides 

into theory (part 1) and practice (part 2).

1.4.1 Part 1: Active Inference in Theory

Active Inference is a normative framework to characterize Bayes- optimal2 

be hav ior and cognition in living organisms. Its normative character is 

evinced in the idea that all facets of be hav ior and cognition in living organ-

isms follow a unique imperative: minimizing the surprise of their sensory obser-

vations. Surprise has to be interpreted in a technical sense: it mea sures how 

much an agent’s current sensory observations differ from its preferred sen-

sory observations— that is,  those that preserve its integrity (e.g., for a fish, 

being in the  water). Importantly, minimizing surprise is not something that 

can be done by passively observing the environment: rather, agents must 

adaptively control their action- perception loops to solicit desired sensory 

observations. This is the active bit of Active Inference.

Minimizing surprise turns out to be a challenging prob lem for technical 

reasons that  will become apparent  later. Active Inference offers a solution 

to this prob lem. It assumes that even if living organisms cannot directly 

minimize their surprise, they can minimize a proxy— called (variational) 

 free energy. This quantity can be minimized through neural computation 

in response to (and in anticipation of ) sensory observations. This emphasis 

on  free energy minimization discloses the relation between Active Infer-

ence and the (first) princi ple that motivates it: the  free energy princi ple 

(Friston 2009).

 Free energy minimization seems a very abstract starting point to explain 

biological phenomena. However, it is pos si ble to derive a number of for-

mal and empirical implications from it and to address a number of central 

questions in cognitive and neural theory.  These include how the variables 

involved in  free energy minimization may be encoded in neuronal popu-

lations; how the computations of minimized  free energy map to specific 

cognitive pro cesses, such as perception, action se lection, and learning; and 
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Overview 7

what kind of be hav iors emerge when an Active Inference agent minimizes 

its  free energy.

As the above list of topics exemplifies, in this book we are mainly concerned 

with Active Inference and  free energy minimization at the level of living 

organisms— simpler (e.g., bacterial) or more complex (e.g.,  human)— and 

their behavioral, cognitive, social, and neural pro cesses. This clarification is 

necessary to contextualize our treatment of Active Inference within the more 

general  free energy princi ple (FEP), which discusses  free energy minimization 

across a much wider range of biological phenomena and timescales beyond 

neural information processing— ranging from evolutionary to cellular and 

cultural (Friston, Levin et al. 2015; Isomura and Friston 2018; Palacios, Razi 

et al. 2020; Veissière et al. 2020)— which are beyond the scope of this book.

It is pos si ble to motivate Active Inference by taking one of two roads: a 

high road and a low road; see figure 1.2.  These two roads provide two dis-

tinct but highly complementary perspectives on Active Inference:

• The high road to Active Inference starts from the question of how liv-

ing organisms persist and act adaptively in the world and motivates 

Active
Inference

Free energy
principle

 

Self-
organization

Bayes’
theorem

Predictive
coding

Bayesian
brain

Planning as
inference

Perception as
inference

Markov
blanket

Variational
Bayes

Surprise
minimization

Autopoiesis and
niche construction

Generative
model

Self-
evidencing

Predictive
processing

Figure 1.2
Two roads to Active Inference: the high road (starting from top- right) and the low 

road (starting from bottom- left).
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8 Chapter 1

Active Inference as a normative solution to  these prob lems. This high 

road perspective is useful to understand the normative nature of Active 

Inference: what living organisms must do to face their fundamental exis-

tential challenges (minimize their  free energy) and why (to vicariously 

minimize the surprise of their sensory observations).

• The low road to Active Inference starts from the notion of the Bayesian 

brain, which casts the brain as an inference engine trying to optimize 

probabilistic repre sen ta tions of the  causes of its sensory input. It then 

motivates Active Inference as a specific, variational approximation to 

the (other wise intractable) inferential prob lem, which has a degree of 

biological plausibility. This low road perspective is useful to illustrate 

how Active Inference agents minimize their  free energy— therefore illus-

trating Active Inference not just as a princi ple but also as a mechanistic 

explanation (aka pro cess theory) of cognitive functions and their neuro-

nal under pinnings.

In chapter 2, we set out the low road perspective on Active Inference. We 

start from foundational theories that cast perception as a prob lem of statis-

tical (Bayesian) inference (Helmholtz 1866) and their modern incarnation 

in the Bayesian brain hypothesis (Doya 2007). We  will see that to perform 

such (perceptual) inference, living organisms must be equipped with—or 

embody— a probabilistic generative model of how their sensory observations 

are generated, which encodes beliefs (probability distributions) about both 

observable variables (sensory observations) and nonobservable (hidden) 

variables. We  will extend this inferential view beyond perception to cover 

prob lems of action se lection, planning, and learning.

In chapter 3, we  will illustrate the complementary high road perspective 

on Active Inference. This chapter introduces the FEP and the imperative 

for biological organisms to minimize surprise. Further to this, it unpacks 

how this princi ple encompasses the dynamics of self- organization and the 

preservation of a statistical boundary or Markov blanket that maintains sepa-

ration from the environment. This is vital in maintaining the integrity of 

biological creatures, and it is central to their autopoiesis.

In chapter 4, we  will unpack Active Inference more formally. This chapter 

takes its cue from the discussion of the Bayesian brain in chapter 2 and sets 

out the mathematical relationship between the self- evidencing dynamics of 

chapter 3 and variational inference. In addition, this chapter sets out two 
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sorts of generative model used to formulate Active Inference prob lems.  These 

include the partially observed Markov decision pro cesses used for decision- 

making and planning and the continuous time dynamical models that inter-

face with sensory receptors and muscles. Fi nally, we see how  free energy 

minimization for each of  these models manifests as dynamic belief updating.

In chapter 5, we  will move from formal treatments to biological impli-

cations of Active Inference. By starting from the premise that “every thing 

that changes in the brain must minimize  free energy” (Friston 2009), we 

 will discuss how the specific quantities involved in the  free energy mini-

mization (e.g., prediction, prediction error, and precision signals) manifest 

in neuronal dynamics. This aids in mapping the abstract computational 

princi ples of Active Inference to specific neural computations that can be 

executed by physiological substrates. This is impor tant in forming hypoth-

eses  under this framework and ensures that  these are answerable to mea-

sured data. In other words, chapter 5 sets out the pro cess theory associated 

with Active Inference.

Throughout the first part of the book, we  will discuss several characteris-

tic aspects of Active Inference.  These highlight the ways in which it is dif fer-

ent from alternative frameworks that seek to explain biological regulation 

and cognition— some of which we preview  here.

•  Under Active Inference, perception and action are two complementary 

ways to fulfill the same imperative: minimization of  free energy. Percep-

tion minimizes  free energy (and surprise) by (Bayesian) belief updating 

or changing your mind, thus making your beliefs compatible with sen-

sory observations. Instead, action minimizes  free energy (and surprise) 

by changing the world to make it more compatible with your beliefs and 

goals. This unification of cognitive functions marks a fundamental dif-

ference between Active Inference and other approaches that treat action 

and perception in isolation from one another. Learning is yet another 

way to minimize  free energy. However, it is not fundamentally dif fer ent 

from perception; it simply operates at a slower timescale. The comple-

mentarity between perception and action  will be unpacked in chapter 2.

• In addition to driving action se lection in the pre sent to change currently 

available sensory data, the Active Inference framework accommodates 

planning—or the se lection of the optimal course of action (or policy) 

in the  future. Optimality  here is mea sured in relation to an expected  free 
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10 Chapter 1

energy and is distinct from the notion of variational  free energy considered 

above in the context of action and perception. Indeed, while computing 

variational  free energy depends on pre sent and past observations, com-

puting expected  free energy also requires predicted  future observations 

(hence the term expected). Interestingly, the expected  free energy of a policy 

comprises two parts. The first quantifies the extent to which the policy is 

expected to resolve uncertainty (exploration) and the second how consis-

tent the predicted outcomes are with an agent’s goals (exploitation). In 

contrast with other frameworks, policy se lection in Active Inference auto-

matically balances exploration and exploitation. The relations between 

variational and expected  free energy  will be unpacked in chapter 2.

•  Under Active Inference, all cognitive operations are conceptualized as 

inference over generative models—in keeping with the idea that the brain 

performs probabilistic computations— aka the Bayesian brain hypothesis. 

Yet, the appeal to a specific approximate form of Bayesian inference— 

that is, a variational scheme that is motivated by first princi ples— adds 

specificity to the pro cess theory. Furthermore, Active Inference extends 

the inferential approach to domains of cognition that are rarely con-

sidered and adds some specificity to the kind of models and inferential 

pro cesses that may be implemented by biological brains.  Under some 

assumptions, the dynamics that emerge from generative models used 

in Active Inference closely correspond to widespread models in compu-

tational neuroscience, such as predictive coding (Rao and Ballard 1999) 

and the Helmholtz machine (Dayan et  al. 1995). The specifics of the 

variational scheme  will be unpacked in chapter 4.

•  Under Active Inference, both perception and learning are active pro cesses, 

for two reasons. First, the brain is essentially a predictive machine, which 

constantly predicts incoming stimuli rather than passively waiting for 

them. This is impor tant as perceptual and learning pro cesses are always 

contextualized by prior predictions (e.g., expected and unexpected stim-

uli affect perception and learning in dif fer ent ways). Second, creatures 

engaging in Active Inference actively seek out salient sensory observa-

tions that resolve their uncertainty (e.g., by orienting their sensors or 

selecting learning episodes that are informative). The active character 

of perception and learning stands in contrast with most current theo-

ries that treat them as largely passive pro cesses; this  will be unpacked in 

chapter 2.
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• Action is quintessentially goal directed and purposive. It starts from 

a desired outcome or goal (analogous to the concept of a set- point in 

cybernetics), which is encoded as a prior prediction. Planning proceeds 

by inferring an action sequence that fulfills this prediction (or equiva-

lently, reduces any prediction error between prior prediction and the 

current state). The goal- directed character of action in Active Inference is 

in keeping with early cybernetic formulations but is distinct from most 

current theories that explain be hav ior in terms of stimulus- response 

mappings or state- action policies. Stimulus- response or habitual be hav-

ior then becomes a special case of a broader  family of policies in Active 

Inference. The goal- directed nature of Active Inference  will be unpacked 

in chapters 2 and 3.

• Vari ous constructs of Active Inference have plausible biological analogues 

in the brain. This implies that— once one has defined a specific genera-

tive model for a prob lem at hand— one can move from Active Inference 

as a normative theory to Active Inference as a pro cess theory, which 

makes specific empirical predictions. For example, perceptual inference 

and learning correspond to changing synaptic activity and changing 

synaptic efficacy, respectively. Precision of predictions (in predictive cod-

ing) corresponds to the synaptic gain of prediction error units. Precision 

of policies corresponds to dopaminergic activity. Some of the biological 

consequences of Active Inference  will be unpacked in chapter 5.

1.4.2 Part 2: Active Inference in Practice

While the first part of the book provides readers with the conceptual and 

formal tools to understand Active Inference, the second part focuses on 

practical issues. Specifically, we hope to provide readers with the tools to 

understand existing Active Inference models of cognitive functions (and 

dysfunctions) and to design novel ones. To this aim, we discuss specific 

examples of models using Active Inference. Importantly, models of Active 

Inference can vary along dif fer ent dimensions (e.g., with discrete or con-

tinuous time formulations, flat or hierarchical inference). The second part 

is structured as follows:

In chapter 6, we introduce a  recipe to build Active Inference models. 

The  recipe covers the essential steps to design an effective model, which 

include the identification of the system of interest, the most appropriate 
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12 Chapter 1

form of the generative model (e.g., to characterize discrete-  or continuous- 

time phenomena), and the specific variables to be included in the model. 

This chapter therefore offers an introduction to the design princi ples that 

underwrite the models discussed in the following chapters.

In chapter 7, we discuss Active Inference models that address prob lems 

formulated in discrete time; for example, as hidden Markov models (HMMs) 

or partially observable Markov decision pro cesses (POMDPs). Our examples 

include a model of perceptual pro cessing and a model of discrete foraging 

choices— that is,  whether to turn left or right at a decision point to secure 

a reward. We also introduce topics such as information seeking, learning, 

and novelty seeking, which can be treated in terms of discrete- time Active 

Inference.

In chapter 8, we discuss Active Inference models that address prob lems 

formulated in continuous time, using stochastic differential equations. 

 These include models of perception (like predictive coding), movement con-

trol, and sequential dynamics. Interestingly, it is in the continuous- time 

formulation that some of the most distinctive predictions of Active Infer-

ence appear, such as the idea that movement generation stems from the ful-

fillment of predictions and that attentional phenomena can be understood 

in terms of precision control. We also introduce hybrid models of Active 

Inference that include both discrete-  and continuous- time variables.  These 

permit simultaneous assessment of the choice among discrete options (e.g., 

targets for saccades) and the continuous movements resulting from the 

choice (e.g., oculomotor movements).

In chapter 9, we illustrate how to use Active Inference models to analyze 

data from behavioral experiments. We discuss the specific steps that are 

necessary for model- based data analy sis, from the collection of data to 

the formulation of a model and its inversion to support the analy sis of data 

from single participants or at the group level.

In chapter  10, we discuss the relations between Active Inference and 

other theories in psy chol ogy, neuroscience, AI, and philosophy. We also 

highlight the most impor tant aspects of Active Inference that distinguish it 

from the other theories.

In the appendixes, we briefly discuss the mathematical background 

required to understand the most technical parts of the book, including 

the notions of Taylor series approximation, variational Laplace, variational 
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calculus, and more. For reference we also pre sent in a concise form the most 

impor tant equations used in Active Inference.

In sum, the second part of the book illustrates a broad variety of mod-

els of biological and cognitive phenomena that can be constructed using 

Active Inference and a methodology to design novel ones. Apart from the 

interest of the specific models, we hope that our treatment clarifies the 

value of using a unified, normative framework to address biological and 

cognitive phenomena from a coherent perspective. In the end, this is the 

real appeal of normative frameworks: to provide a unified perspective and 

a guiding princi ple to reconcile apparently disconnected phenomena—in 

this case, phenomena like perception, decision- making, attention, learning, 

and movement control, each having its separate chapter in any psy chol ogy 

or neuroscience manual.

The models highlighted in the second part have been selected to illus-

trate specific points as simply as pos si ble. While we cover several models 

and domains, from discrete- time decisions to continuous- time perception 

and movement control, we are clearly disregarding many  others that are 

equally in ter est ing. Many other Active Inference models exist in the lit er-

a ture that cover domains as diverse as biological self- organization and the 

origins of life (Friston 2013), morphogenesis (Friston, Levin et al. 2015), cog-

nitive robotics (Pio- Lopez et al. 2016, Sancaktar et al. 2020), social dynam-

ics and niche construction (Bruineberg, Rietveld et al. 2018), the dynamics 

of synaptic networks (Palacios, Isomura et al. 2019), learning in biological 

networks (Friston and Herreros 2016), and psychopathological conditions, 

such as post- traumatic stress disorder (Linson et al. 2020) and panic disor-

der (Maisto, Barca et al. 2021).  These models vary along many dimensions: 

some are more directly related to biology whereas  others are less so; some 

are single- agent models whereas  others are multi- agent models; some tar-

get adaptive inference whereas other target maladaptive inference (e.g., in 

patient groups), and so on.

This growing lit er a ture exemplifies the increasing popularity of Active 

Inference and the possibility of using it in a very large variety of domains. 

The aim of this book is to provide our readers with the ability to under-

stand and use Active inference in their own research— possibly, to explore 

its unforeseen potentialities.
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1.5 Summary

This chapter briefly introduces the Active Inference approach to explain 

biological prob lems from a normative perspective— and previews some 

implications of this perspective that  will be unpacked in  later chapters. Fur-

thermore, this chapter highlights the division of the book into two parts, 

which aim to help readers understand Active Inference and use it in their 

own research, respectively. Over the next few chapters, we  will develop 

the low road and high road perspectives outlined herein, before delving 

into the structure of generative models and the resulting message passing. 

Together  these comprise Active Inference in princi ple and provide the pre-

liminaries for Active Inference in practice. We hope that  these chapters  will 

persuade readers that Active Inference offers not only a unifying princi ple 

 under which to understand be hav ior but also a tractable approach to study-

ing action and perception in autonomous systems.
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My thinking is first and last and always for the sake of my  doing.

— William James

2.1 Introduction

This chapter introduces Active Inference by starting from the  Helmholtzian—

or perhaps Kantian— view of “perception as unconscious inference” (Helm-

holtz 1867) and related ideas that have emerged more recently  under the 

Bayesian brain hypothesis. It explains how Active Inference subsumes and 

extends  these ideas by treating not just perception but also action, planning, 

and learning as prob lems of (Bayesian) inference and by deriving a principled 

(variational) approximation to such other wise intractable prob lems.

2.2 Perception as Inference

 There is a long tradition of seeing the brain as a “predictive machine,” 

or a statistical organ that infers and predicts external states of the world. 

This idea dates back to the notion of “perception as unconscious infer-

ence” (Helmholtz 1866). More recently, this has been reformulated as the 

“Bayesian brain” hypothesis (Doya 2007). From this perspective, percep-

tion is not a purely bottom-up transduction of sensory states (e.g., from the 

ret ina) into internal repre sen ta tions of what is out  there (e.g., as patterns 

of neuronal activity). Rather, it is an inferential pro cess that combines (top- 

down) prior information about the most likely  causes of sensations with 

(bottom-up) sensory stimuli. Inferential pro cesses operate on probabilistic 

2 The Low Road to Active Inference

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



16 Chapter 2

repre sen ta tions of states of the world and follow Bayes’ rule, which pre-

scribes the (optimal) update in the light of sensory evidence. Perception is 

not a passive outside-in process—in which information is extracted from 

impressions on our sensory epithelia from “out  there.” It is a constructive 

inside- out process—in which sensations are used to confirm or disconfirm 

hypotheses about how they  were generated (MacKay 1956, Gregory 1980, 

Yuille and Kersten 2006, Neisser 2014, A. Clark 2015).

In turn, performing Bayesian inference requires a generative model— 

sometimes referred to as a forward model. A generative model is a construct 

from statistical theory that generates predictions about observations. It may 

be formulated as the joint probability P( y, x) of observations y and the world’s 

hidden states x that generate  these observations. The latter are referred to 

as hidden or latent states as they cannot be observed directly. This joint 

probability can be decomposed into two parts. The first is a prior P(x), which 

denotes the organism’s knowledge about the hidden states of the world prior 

to seeing sensory data. The second is the likelihood P( y | x), which denotes 

the organism’s knowledge of how observations are generated from states. 

Bayes’ rule tells us how to combine  these two ele ments, essentially updating 

a prior probability P(x) into a posterior probability of hidden states  after receiv-

ing observations P(x | y). For readers who need a brief refresher on basic 

probability theory, box 2.1 provides a summary.

Bayesian inference is a broad topic that arises in disciplines like statistics, 

machine learning, and computational neuroscience. A full treatment of the 

associated topics is beyond the scope of this book, but  there are excellent 

resources available for  those who wish to understand it in depth (Murphy 

2012). However, all of this is based on one  simple rule. To illustrate this rule, 

we consider an example of Bayesian perceptual inference (figure 2.1). Imag-

ine a person who has a strong belief that she is confronted with an apple. 

This belief corresponds to a prior probability, or prior for short. This prior 

comprises the probability attributed to the apple hypothesis and the prob-

ability assigned to alternative hypotheses. In this example, our alternative 

hypothesis is that it is not an apple but a frog. Numerically, the prior prob-

ability distribution assigns 0.9 to apple and 0.1 to frog. Note that, as we have 

assumed that  there are only two plausible (mutually exclusive) hypotheses, 

they must sum to one. The person is also equipped with a likelihood model, 

which assigns a high probability to the fact that frogs jump, whereas apples 

do not. This likelihood specifies the (probabilistic) mapping from the two 

hidden states (frog or apple) to the two observations (jumps or does not 
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Box 2.1
The sum and product rules of probability

Probabilistic reasoning is underwritten by two key rules: the sum and product 

rules of probability, which are as follows (respectively):

P(x)
x∑ = 1

P(x)P(y |x) = P(x,y)

The sum rule says that the probability of all pos si ble events (x) must sum 

(or integrate) to one. The product rule says that the joint probability of two 

random variables (x and y) may be decomposed into the product of the prob-

ability of one variable (P(x)) and the conditional probability of the second vari-

able given the first (P( y | x)). A conditional probability is the probability of one 

variable ( here, y) if we know the value that the other variable ( here, x) takes.

We can develop two impor tant results from  these  simple rules. The first is 

the operation of marginalization. The second is Bayes’ rule. Marginalization 

allows us to obtain a distribution of just one of the two variables from a joint 

distribution:

P(x,y)
x∑ = P(y)P(x |y)

x∑
Product rule

! "##### $#####
= P(y) P(x |y)

x∑ = P(y)

Sum rule
! "#### $####

The probability of y is referred to as a marginal probability, and we refer 

to this operation as marginalizing out x. Bayes’ rule may be obtained directly 

from the product rule:

P(x)P(y |x) =
Product rule

! "## $##
P(x,y) = P(y)P(x |y)

Product rule
! "## $##

This lets us translate between a prior and conditional distribution (likeli-

hood) and the associated marginal and the other conditional distribution 

(posterior). Put simply, Bayes’ rule just says that the probability of two  things 

is the probability of the first, given the second, times the probability of the sec-

ond, which is the same as the probability of the second, given the first, times 

the probability of the first.

jump). Together, the prior and the likelihood form the person’s generative 

model.

Now imagine that the person observes that her apple- frog jumps. Bayes’ 

rule tells us how to form a posterior belief from the prior, taking into 

account the likelihood of jumping. This rule is expressed as follows:

P(x | y) = P(x)P(y |x)
P(y)  

(2.1)
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 Under the likelihood model in figure  2.1, the posterior probability 

assigned to the frog is 0.9, and the probability assigned to the apple is 0.1. 

As highlighted in box 2.1, the denominator of equation 2.1 may be com-

puted by marginalizing the numerator. Using our apple- frog example, we 

take the opportunity to unpack two dif fer ent notions of surprise— both of 

which are impor tant in Active Inference. The first, which we refer to simply 

as surprise, is the negative log evidence, where evidence is the marginal 

probability of observations. In our example, this is the negative log prob-

ability of observing anything jumping  under the generative model. Surprise 

is a very impor tant quantity from a Bayesian perspective. It is a mea sure of 

how poorly a model fits the data it tries to explain. To put this intuitively, 

0.1 0.9 0.9 0.1

Likelihood model

Observe jumping

Prior beliefs Posterior beliefs

P(x = frog) P(x = frog | y = jumps) P(x = apple | y = jumps)

P( y = jumps | x = apple) P( y = jumps | x = frog)

P(x = apple)

0.81

0.19

Frogs

0.01

0.99

A
pples

G
en

er
at

iv
e 

m
od

el

P( y = doesn't jump | x = apple) P( y = doesn't jump | x = frog)

Figure 2.1
A  simple example of Bayesian inference. Upper left: The organism’s prior belief P(x) 

about the object it  will see, before having made any observations, i.e., a categorical 

distribution over two possibilities, apple (with probability 0.9) and frog (with prob-

ability 0.1). Upper right: The organism’s posterior belief P(x | y )  after observing that the 

object jumps. Posterior beliefs can be computed using Bayes’ rule  under a likelihood 

function P( y | x). This is shown below the prior and posterior, and specifies that if 

the object is an apple,  there is a very small probability (0.01) that it  will jump, while 

if it is a frog, the probability that it  will jump is much higher (0.81). (The probability 

bars in this figure are not exactly to scale.) In this specific case, the update from prior 

to posterior is large.
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we can work out the probability of the observed (jumping) be hav ior  under 

our model. Remember that this assigns a very high prior probability to apples 

and a low prior probability to frogs. Thus, our marginal probability of jump-

ing is as follows:

P(y = jumps) = P(x,y = jumps)
x∑

= P(x)P(y = jumps |x)
x∑

= P(x = frog )P(y = jumps |x = frog )

+ P(x = apple)P(y = jumps |x = apple)
= 0.1 × 0.81 + 0.9 × 0.01

= 0.09  

(2.2)

This means that,  under this model, we would only expect to observe 

jumping be hav ior about 9 times out of 100 observations. As such, we should 

be surprised to observe this if we subscribed to the model in figure 2.1. We 

can quantify this in terms of surprise (ℑ). This is given by ℑ( y   =  jumps)   =   
−ln P( y  =  jumps)   =  −ln(0.09)   =  2.4 nats.1 The bigger this number, the worse 

the model as an apt explanation for the observations at hand. This lets us 

compare models in relation to data. For example, consider an alternative 

model, where we have a prior belief that frogs are seen 100  percent of the 

time. Following the same steps as in equation 2.2, we calculate a surprise 

of about 0.2 nats. This is a better model of  these data, as the observation 

is much less surprising. The procedure of scoring models on the basis of 

their evidence (or surprise) is often referred to as Bayesian model compari-

son. For more complicated models, the form of the surprise may not be so 

 simple.  Table 2.1 provides the form of the surprise (omitting constants) for 

a range of probability distributions—in addition to the categorical probabil-

ity in our example. Crucially, this lets us talk about surprise for probability 

distributions whose support2 differs from the  simple example used  here. 

This is impor tant  because the way in which sensory data are generated by 

the world varies with the sort of data. We could be surprised by encounter-

ing the face of someone we did not expect to see (categorical distribution), 

or we could be surprised by it being colder outside than we anticipated 

(continuous distribution).  Table 2.1 may be seen as a portfolio of the prob-

ability distributions at our disposal when we come to construct generative 

models in subsequent chapters. More generally, it makes the point that sur-

prise is a concept that can be evaluated for any given  family of probability 

distributions.
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 Table 2.1
Probability distributions and surprise3

Distribution Support Surprise (ℑ)

Gaussian x∈! 1
2 (x − µ) iΠ(x − µ)

Multinomial1 xi∈(0, . . . , N )
i ∈{1, . . . , K}

xi = Ni∑

− xi lndii∑

Dirichlet2 xi∈(0,1)
i ∈{1, . . . , K}

xi = 1
i∑

(1 − α i )ln xii∑

Gamma x ∈(0,∞) (bx + (1 − a) ln x)

Notes: 1. Special cases include categorical (K  > 2, N  =  1), binomial (K  =  2, N  > 1), and 

Bernoulli (K  =  2, N  =  1) distributions. 2. A special case is the beta distribution (K  =  2).

The second notion of surprise is (slightly confusingly) referred to as Bayes-

ian surprise. This is a mea sure of how much we have to update our beliefs 

following an observation. In other words, Bayesian surprise quantifies the 

difference between a prior and a posterior probability. This raises the ques-

tion of how we quantify the dissimilarity of two probability distributions. 

One answer, from information theory, is to use a Kullback- Leibler (KL) Diver-

gence. This is defined as the average difference between two log probabilities:

DKL Q(x)||P(x)[ ] ! EQ (x) lnQ(x) − ln P(x)[ ]  (2.3)

The E symbol  here indicates an average (or expectation) as outlined in 

box 2.2. Using the KL- Divergence, we can quantify the Bayesian surprise of 

our example:

DKL P(x | y) || P(x)[ ]
= P(x = frog | y = jumps) ln P(x = frog | y = jumps) − ln P(x = frog )( )
+ P(x = apple | y = jumps) ln P(x = apple | y = jumps) − ln P(x = apple)( )

= 0.9 ln(0.9) − ln(0.1)( ) + 0.1 ln(0.1) − ln(0.9)( )
≈1.8 nats  

(2.4)

This scores the amount of belief updating, as opposed to simply how 

unlikely the observation was. To highlight the distinction between surprise 

and Bayesian surprise, consider what happens if we commit to a prior belief 

that we  will always see apples. The Bayesian surprise  will be zero, as the prior 
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is so confident that we do not update it at all following our observations. 

However, the surprise is very large (4.6 nats) as it is highly unlikely that an 

apple  will jump.

Note that while we illustrated Bayesian inference on the basis of a very 

 simple generative model, it applies to generative models of any complexity. 

In chapter 4 we  will highlight two forms of generative model that under-

write most applications in Active Inference.

2.3 Biological Inference and Optimality

 There are two impor tant points that connect the above inferential scheme 

to biological and psychological theories of perception. First, the inferen-

tial procedure discussed requires the interplay of top- down pro cesses that 

encode predictions (from the prior) and bottom-up pro cesses that encode 

sensory observations (as mediated by the likelihood). This interplay of top- 

down and bottom-up pro cesses distinguishes the inferential view from alter-

native approaches that only consider bottom-up pro cesses. Furthermore, it 

Box 2.2
Expectations

It is useful to refer to the expectation of a random variable x, usually denoted 

E[ x ]. This is the weighted average of all the values that the variable can assume, 

weighted by their probability. For discrete random variables (that can only take 

a countable number of pos si ble values), this is given by a weighted sum:

E[x] = xP(x)
x∑

For example, for a discrete (numerical) variable that can only assume two 

values (1 and 2) with equal probability of 1
2 , this is E[x]= 1 i 1

2 + 2 i 1
2 = 3

2 .

For continuous random variables (that can take infinitely many values), 

sums are replaced by integrals. Expectations can also be applied to functions 

of random variables, as opposed to the variables directly. For example, if we 

have a function f (x), where x has some continuous distribution, the expecta-

tion is defined as follows:

E[ f (x)]= f (x)p(x)dx∫
We  will use this notation throughout this book, where the function f (x) 

 will often be a log probability, or log probability ratio.
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is central in modern biological treatments of perception, such as predictive 

coding (discussed in chapter 4), which is a specific algorithmic (or process- 

level) implementation of the more general (Bayesian) inference scheme dis-

cussed  here.

Second, Bayesian inference is optimal. Optimality is defined in relation 

to a cost function that is optimized (i.e., minimized), which, for Bayesian 

inference, is known as variational  free energy— closely related to surprise. We 

return to this in section 2.5. By explic itly considering the full distribution 

over hidden states, it naturally  handles uncertainty, hence avoiding the limi-

tations of alternative approaches that only consider point estimates of hidden 

states (e.g., the mean value of x). One such alternative would be maximum 

likelihood estimation, which simply selects the hidden state most likely to 

have generated the data at hand. The prob lem with this is that such estimates 

ignore both the prior plausibility of the hidden state and the uncertainty 

surrounding the estimation. Bayesian inference does not suffer  these limita-

tions. However, despite the use of surprise in objectively assessing  whether 

the model is fit for purpose, it is impor tant to appreciate that inference itself 

is subjective. The results of inference are not necessarily accurate in any objec-

tive sense (i.e., the organism’s belief may not actually correspond to real ity) 

for at least two impor tant reasons. First, biological creatures operate on the 

basis of  limited computational and energetic resources, which render exact 

Bayesian inference intractable.4 This requires approximations that preclude 

guarantees of exact Bayesian optimality.  These approximations include the 

notion of a variational posterior— based on something called a mean field 

approximation— which is central to chapter 4.

The second reason optimality may be thought of as subjective is that 

organisms operate on the basis of a subject’s generative model of how their 

observations are generated, which may or may not correspond to the real 

generative pro cess that generates their observations. This is not to say that the 

generative model should correspond to the generative pro cess. In fact,  there may 

be models that afford better (e.g., simpler) explanations of the data at hand 

than the pro cesses that actually generated them—as quantified by their rela-

tive surprise. A nice example of this is illusions, for which someone finds 

a simpler explanation for their visual input in relation to how the visual 

stimuli have been carefully engineered by a mischievous psychophysicist.

The generative model itself may be optimized as new experience is acquired. 

This may or may not converge to the generative pro cess. Figure 2.2 illustrates 
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this point and the difference between true environmental contingencies, or 

the generative pro cess, which is inaccessible to the organism and the organ-

ism’s generative model of the world. In this par tic u lar example, the generative 

pro cess is in a true state x* that is inaccessible to the organism. However, the 

organism and world are reciprocally coupled, and x* generates an observation 

y, which the organism senses. The organism can use this observation y and 

Bayes’ rule to infer the (posterior probability of ) some explanatory variable 

or hidden state in the generative model. In the figure, we refer to both x* 

and x as hidden states, emphasizing that neither is observable. However, they 

are subtly dif fer ent: the former is part of the organism’s generative model, 

whereas the latter is part of the generative pro cess and inaccessible to the 

organism. Furthermore, x* and x do not necessarily live in the same space. It 

might be that the hidden states in the external world take on values that lie 

outside the space of explanations available to the brain. Conversely, it might 

be that the brain’s explanations include variables that do not exist in the 

MODEL PROCESSHidden
state

Hidden
state

Action

Observation
Inferred

state

x y

u

x*

Figure 2.2
Generative pro cess and generative model. Both represent ways in which sensory data 

( y) could be generated given hidden states (x) and are represented through arrows 

from x to y to indicate causality. The difference is that the pro cess is the true causal 

structure by which data are generated, while the model is a construct used to draw 

inferences about the  causes of data (i.e., use observations to derive inferred states). 

The hidden states of the generative model and the generative pro cess are not the 

same. The organism’s model includes a range of hypotheses (x) about the hidden 

state, which do not necessarily include the true value of the hidden state x∗ of the 

generative pro cess. In other words, the models we use to explain our sensorium may 

include hidden states that do not exist in the outside world, and vice versa. Action 

(u) is generated on the basis of the inferences made  under a generative model. Action is 

shown  here as part of the generative pro cess, making changes to the world, despite 

being selected from the inferences drawn  under the model.
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outside world. For example, the former could be 5- dimensional and the latter 

2- dimensional, or one could be continuous and the other categorical.

The distinction between the generative model and pro cess is impor tant 

to contextualize psychological claims about optimality of inference—to the 

extent that  these claims are valid— which, on a Bayesian view, is always 

contingent on the organism’s resources. By resources, we mean its specific 

generative model, and bounded computational and mnemonic resources.

2.4 Action as Inference

The discussion to this point is common to all Bayesian brain theories. How-

ever, we now introduce the  simple but fundamental advance offered by 

Active Inference. This starts from the same inferential perspective discussed 

above but extends it to consider action as inference. This idea stems from 

the concept that Bayesian inference minimizes surprise (or, equivalently, 

maximizes Bayesian model evidence). So far, we have considered what hap-

pens when we compute surprise by performing inference— and select among 

models on the basis of their capacity to minimize surprise. However, surprise 

does not only depend on the model. It also depends on the data. By acting 

on the world to change the way in which data are generated, we can ensure 

a model is fit for purpose by choosing  those data that are least surprising 

 under our model.

Equipped with a mechanism to produce actions, an organism can engage 

in reciprocal exchanges with its environment; see figure 2.2. In animals, 

this mechanism takes the form of a motor reflex loop. Essentially, for each 

action- perception cycle, the environment sends an observation to the 

organism. The organism uses (an approximation to) Bayesian inference to 

infer its most likely hidden states. It then generates an action and sends it 

to the environment in an attempt to make the environment less surprising. 

The environment executes the action, generates a new observation, and 

sends it to the organism. Then, a new cycle starts. The sequential descrip-

tion  here is written for didactic purposes; it is impor tant to realize that 

 these are not  really discrete steps but are continuous dynamical pro cesses.

Active Inference goes beyond the recognition that perception and action 

have the same (inferential) nature. It also assumes that both perception and 

action cooperate to realize a single objective—or optimize just one function— 

rather than having two distinct objectives, as more commonly assumed. In 
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the Active Inference lit er a ture, this common objective has been described in 

vari ous (informal and formal) ways, including the minimization of surprise, 

entropy, uncertainty, prediction error, or (variational)  free energy.  These terms 

are related to one another but sometimes their relations are not immediately 

clear, causing some confusion. Furthermore,  these terms are used in dif fer-

ent contexts; for example, prediction error minimization is used in biological 

contexts where the objective is explaining brain signals, while variational 

 free energy minimization is used in machine learning.

In the next two sections, we  will clarify that the single quantity that 

Active Inference agents minimize through perception and action is varia-

tional  free energy. However,  under some conditions, one can reduce variational 

 free energy to other notions, such as the discrepancy between the genera-

tive model and the world, or the difference between what one expects and 

what one observes (i.e., a prediction error). We  will introduce variational 

 free energy formally in section 2.5. For simplicity section 2.4 focuses on the 

ways in which perception and action minimize the discrepancy between the 

generative model and the world.

2.5 Minimizing the Discrepancy between Model and World

Having established perception and action in terms of Bayesian inference, 

we now turn to the question of what the objective of inference is. In other 

words, what is being optimized by inference? In cognitive science, it is 

common to assume that dif fer ent cognitive functions like perception and 

action optimize dif fer ent objectives. For example, we could assume percep-

tion maximizes the accuracy of reconstruction while action se lection maxi-

mizes utility. Instead, a fundamental insight of Active Inference is that both 

perception and action serve the very same objective. As a first approxima-

tion, this common objective of perception and action can be formulated as a 

minimization of the discrepancy between the model and the world. Sometimes 

this is operationalized in terms of prediction error.

To understand how perception and action reduce the discrepancy between 

the model and the world, consider again the example of a person who expects 

to see an apple (figure 2.3). She generates a top- down visual prediction (e.g., 

about seeing something red and not jumping). This visual prediction is com-

pared with a sensation (e.g., something jumping)— and this comparison 

results in a discrepancy.

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



26 Chapter 2

The person can resolve this discrepancy in two ways. First, she could 

change her mind about what she is seeing (i.e., a frog) to fit the world, 

hence resolving the discrepancy. This corresponds to perception. Second, 

she could foveate the nearest apple tree and see something that looks very 

much like an apple. This also resolves the initial discrepancy, but in a dif fer-

ent way. This entails changing the world— including her direction of gaze— 

and subsequent sensations to fit what is in her mind, not changing her 

mind to fit the world. This is the other direction of fit. This is action.

While changing the direction of one’s gaze seems less compelling than 

changing one’s mind in the world of apples and frogs, let us consider another 

case: a person who expects his body temperature to be in a certain range 

who senses a high temperature via central thermoreceptors. This is surprising 

and pre sents a significant discrepancy to resolve. As in the former example, 

he has two ways to minimize this discrepancy, corresponding to perception 

(changing mind) and action (changing the world), respectively. In this case, 

simply changing one’s mind does not seem very adaptive, but acting to lower 

the body temperature (e.g., by opening the win dow) is.

This speaks to the fact that in Active Inference, the notion of marginal 

probabilities or surprise (e.g., about body temperature) has a meaning that 

goes beyond standard Bayesian treatments to absorb notions like homeo-

static and allostatic set- points. Technically, Active Inference agents come 

equipped with models that assign high marginal probabilities to the states 

they prefer to visit or the observations they prefer to obtain. For a fish, this 

means a high marginal likelihood for being in  water. This implies that 

DISCREPANCY

Prediction Observation

Perception:
change beliefs

Action:
change world

Figure 2.3
Both perception and action minimize discrepancy between model and world.
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organisms implicitly expect the observations they sample to be within their 

comfort zone (e.g., physiological bounds).

In sum, we have discussed how, at any point in time, we can minimize 

the discrepancy between our model and our world through perception and 

action.  Whether we adjust our beliefs or our data depends on the confidence 

with which we hold  those beliefs. In our example of the apple, the belief 

is held with sufficient uncertainty that this  will be updated as opposed to 

acted on. In contrast, in the temperature example, we are considerably more 

confident about our core temperature  because it underwrites our existence. 

This confidence means we update our world to comply with our beliefs. 

Yet, in Active Inference, perception and action act more cooperatively than 

suggested by this treatment. To understand why this is the case, the next 

section moves from the restricted notion of discrepancy (or prediction error) to 

the more general notion of variational  free energy— which is the quantity that 

Active Inference actually minimizes and which subsumes prediction error as 

a special case.

2.6 Minimizing Variational  Free Energy

So far, we have discussed perception and action within a Bayesian scheme 

that aims to minimize surprise. Yet, exact Bayesian inference supporting per-

ception and action is computationally intractable in most cases,  because two 

quantities— the model evidence (P( y)) and the posterior probability (P(x | y))— 

cannot be computed for two pos si ble reasons. The first is that for complex 

models,  there may be many types of hidden states that all need margin-

alizing out, making the prob lem computationally intractable. The second 

is that the marginalization operation might require analytically intractable 

integrals. Active Inference appeals to a variational approximation of Bayes-

ian inference that is tractable.

The formalism of variational inference  will be unpacked in chapter 4. 

 Here, it suffices to say that performing variational Bayesian inference 

implies substituting the two intractable quantities— posterior probability and 

(log) model evidence— with two quantities that approximate them but can be 

computed efficiently— namely, an approximate posterior Q and a variational 

 free energy F, respectively. The approximate posterior is sometimes called 

a variational or recognition distribution. Negative variational  free energy 
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is also known as an evidence lower bound (ELBO), especially in machine 

learning.

Most importantly, the prob lem of Bayesian inference now becomes a 

prob lem of optimization: the minimization of variational  free energy F. Vari-

ational  free energy is a quantity with roots in statistical physics that plays 

a fundamental role in Active Inference. In equation 2.5, it is denoted as 

F [Q , y], as it is a functional (function of a function) of the approximate 

posterior Q and a function of data y:

F[Q ,y]= −EQ (x)[ ln P(y,x)]
Energy

! "### $###
− H[Q(x)]

Entropy
!"# $#

= DKL[Q(x) || P(x)]
Complexity

! "### $###
− EQ (x)[ ln P(y |x)]

Accuracy
! "### $###

= DKL[Q(x) || P(x | y)]
Divergence

! "### $###
− ln P(y)

Evidence
!"# $#

 

(2.5)

Variational  free energy may seem prima facie an abstract concept, but 

its nature and the role it plays in Active Inference become apparent when 

decomposed into quantities that are more intuitive and familiar in cogni-

tive science. Each of  these perspectives on variational  free energy offers 

useful intuitions about what  free energy minimization means. We briefly 

sketch  these intuitions  here, as they  will become impor tant when we dis-

cuss examples in the second part of the book.

The first line of equation 2.5 shows that minimizing with re spect to Q 

requires consistency with the generative model (energy) while also main-

taining a high posterior entropy.5 The latter means that, in the absence 

of data or precise prior beliefs (which only influence the energy term), we 

should adopt maximally uncertain beliefs about the hidden states of the 

world, in accord with Jaynes’s maximum entropy princi ple ( Jaynes 1957). 

Put simply, we should be uncertain (adopt a high entropy belief ) when we 

have no information. The term energy inherits from statistical physics. Spe-

cifically,  under a Boltzmann distribution, the average log probability of a 

system adopting some configuration is inversely proportional to the energy 

associated with that configuration— that is, the energy required to move 

the system into this configuration from a baseline configuration.

The second line emphasizes the interpretation of  free energy minimi-

zation as finding the best explanation for sensory data, which must be 

the simplest (minimally complex6) explanation that is able to accurately7 

account for the data (cf. Occam’s razor). The complexity- accuracy trade- off 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



The Low Road to Active Inference 29

recurs across several domains, normally in the context of model compari-

son for data analy sis. In statistics, other approximations to model evidence 

are sometimes used, such as the Bayesian information criterion or Akaike 

information criterion. The complexity- accuracy trade- off  will become 

impor tant when we describe how to use  free energy for model comparison 

during model- based data analy sis— and in the context of structure learning 

and model reduction. Inferring explanations that have minimal complex-

ity is also impor tant from a cognitive perspective. This is  because one can 

assume that updating what one knows (the prior) to accommodate the data 

entails a cognitive cost (Ortega and Braun 2013, Zénon et al. 2019); hence, 

an explanation that diverges minimally from the prior is preferable.

On this view, the complexity cost is just Bayesian surprise. In other words, 

the degree to which “I change my mind” is quantified by the divergence 

between the prior and the posterior. This means  every accurate explanation 

for my sensations incurs a complexity cost, and this cost scores the degree 

of Bayesian belief updating. Variational  free energy, then, scores the difference 

between accuracy and complexity.

The final line expresses the  free energy as a bound on negative log 

evidence (see figure 2.4). As the left part of the figure illustrates, the  free 

energy is an upper bound on negative log evidence, where the bound is the 

divergence between Q and the posterior probability that would have been 

obtained  were it pos si ble to perform exact (as opposed to variational) infer-

ence. The right part of the figure shows that as the divergence decreases, the 

Upper bound
F [Q,y]

F [Q,y]

–ln P(y)

DKL[Q(x) || P(x | y)]

DKL[Q(x) || P(x | y)]

–ln P(y)

Upper bound

Surprise Surprise

Figure 2.4
Variational  free energy as an upper bound on negative log evidence.
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 free energy approaches the negative log evidence (surprise)— and becomes 

equal to surprise, if the approximate posterior Q matches the exact poste-

rior P(x | y). This offers a formal motivation for perceptual inference as one 

way to lower  free energy by optimizing our approximate posterior Q as 

much as pos si ble.

The final line of equation 2.5 shows that perceptual inference is not the 

only way to minimize  free energy. We could also change the log evidence 

term through acting to change sensory data. This decomposition is in ter est-

ing from a cognitive perspective, since minimizing divergence and maximiz-

ing evidence map to the two complementary sub- objectives of perception 

and action, respectively; see figure 2.5. Note that the above expressions all 

become ways of characterizing the negative log evidence if we replace Q 

with P(x | y), generalizing to the case of exact inference.

In sum, Active Inference amounts to minimizing variational  free energy 

by perception and action. This minimization permits an organism to fit its 

generative model to the observations it samples. This fit is a mea sure of both 

perceptual adequacy (as expressed by the divergence term) and active con-

trol over external states—in the sense that it permits the organism to main-

tain itself in a suitable set of preferred states, as defined by the generative 

model. Another way of phrasing this is to appeal to the divergence versus 

FREE ENERGY

Perception: change
beliefs to minimize

divergence

Action: change
observations to

maximize evidence

EvidenceDivergence

Q y

F[Q, y] = DKL[Q(x) || P(x | y)] – ln P(y)

Figure 2.5
Complementary roles of perception and action in the minimization of variational 

 free energy.
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evidence decomposition of  free energy. Equating the negative log evidence 

with surprise, and noting that the smallest pos si ble divergence is zero, we 

see that  free energy is an upper bound on surprise. This means it can only 

be greater than or equal to surprise. When the organism minimizes its diver-

gence (through perception), then  free energy becomes an approximation to 

surprise. When an organism additionally changes the observations it gath-

ers (by acting) to render them more similar to prior predictions, it minimizes 

surprise.

Variational  free energy has a retrospective aspect, as it is a function of past 

and pre sent, but not  future, observations. Although it facilitates inferences 

about the  future based on past data, it does not directly facilitate prospec-

tive forms of inference based on anticipated  future data. This is impor-

tant in planning and decision- making.  Here, we infer the best actions or 

action sequences (policies) on the basis of the  future observations they are 

expected to bring about.  Doing this requires that we supplement our gen-

erative models with the notion of expected  free energy.

2.7 Expected  Free Energy and Planning as Inference

Expected  free energy extends Active Inference to include a quintessentially 

prospective form of cognition: planning. Planning a sequence of actions, 

such as the series of moves required to escape from a maze, requires con-

sidering  future observations that one expects to gather. For example, the 

consequences of pos si ble courses of action include seeing a dead end  after 

turning right or seeing the exit  after a sequence of three left turns. Each 

pos si ble sequence of actions is termed a policy. This highlights an impor-

tant distinction made in Active Inference between an action and a policy. 

The former is something that directly influences the outside world, while 

the latter is a hypothesis about a way of behaving. The implication is that 

Active Inference treats planning and decision- making as a pro cess of infer-

ring what to do. This brings planning firmly into the realm of Bayesian 

inference and means we must specify priors and likelihoods as before (sec-

tion 2.1). However, in place of frogs and apples, the alternatives are behav-

ioral policies (Is it more probable that I look  toward the pond or the tree?). 

In this section, we first briefly deal with the likelihood— that is, the con-

sequences of pursuing a policy— and then turn to the prior. This is where 

expected  free energy comes in.
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Policy- dependent outcomes are not immediately available (they are in 

the  future), but they can be predicted by chaining together two compo-

nents of the generative model. The first is our beliefs about how hidden 

states change as a function of policies. We  will get into the details of this in 

chapter 4. For now, we use the notation x~ to denote a sequence or trajectory 

of hidden states over time, and we condition trajectories on the policies (π ) 
a creature pursues. This means the dynamical part of our model is given by 

P( x~ | π ). Drawing from our  earlier frog- apple example, the policy may be the 

decision to go to a pond or to an orchard, which changes the probability of 

encountering frogs versus apples.

The second component of the model is the usual likelihood distribution. 

This describes which observations to expect in  every pos si ble state (e.g., 

jumping or not, conditioned on frog or apple). By combining  these two 

components, an organism can engage its generative model vicariously to 

run “what if” or counterfactual simulations of the consequences of its pos-

si ble actions or policies— for example, “What would happen if I go to the 

pond?” Marginalizing over states, this gives us the marginal likelihood or 

evidence for a policy (P(  y~ | π )), or a  free energy approximation to this quan-

tity. In other words, knowing how policies influence state transitions lets 

us compute the likelihood of a sequence of observations  under that policy. 

As we saw in equation 2.1, we need to combine this likelihood with a prior 

probability to calculate the posterior probability of pursuing a policy.

Active Inference decomposes this planning prob lem into two successive 

operations. The first is to compute a score for each policy. The second is 

to form posterior beliefs about which to pursue. The former defines the 

prior belief about the policies to pursue, where the best policies have high 

probability and the worst policies have low probability.  Under Active Infer-

ence, the goodness of a policy is scored by the associated negative expected 

 free energy— just as the goodness of a model fit is scored by the negative  free 

energy of that model. The expected  free energy (G) of policy is dif fer ent from 

the variational  free energy (F ), since calculating the former requires consid-

eration of  future, policy- dependent observations. In contrast, the latter only 

considers pre sent and past observations. Calculating expected  free energy 

therefore engages the generative model to predict  future observations that 

would stem from each policy—if it  were to be executed—up to some plan-

ning horizon. Furthermore,  because a policy unfolds over multiple time 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



The Low Road to Active Inference 33

steps, the final mea sure of expected  free energy for each policy has to inte-

grate over all  future time steps of that policy.

The expected  free energy of each policy can be converted in a quality 

score (by taking its negative) and is directly available as a prior by agents 

engaging in Active Inference. This is  because— consistent with the notion 

of potential energy in physics— expected  free energy is expressed in the 

space of log probabilities. Converting it into a belief (or probability distribu-

tion) over policies is then a  matter of exponentiating (to undo the log) and 

normalizing (to ensure consistency with the sum rule in box 2.1). Policies 

that are associated with a lower expected  free energy are assigned higher 

probability and become the policies that the organism expects to pursue.

Ultimately, inferring that we are pursuing a par tic u lar policy has conse-

quences for the sensory data we predict. For example, a policy that includes 

flexing my elbow entails predictions about the proprioceptive input from 

the biceps and triceps muscles. This provides the link between planning and 

action, as the predictions associated with a plan translate into action that 

resolves discrepancies with mea sured proprioceptive data (see section 2.3).

2.8 What Is Expected  Free Energy?

So far, we have assumed that during planning, the organism scores its poli-

cies according to their expected  free energy. However, we have sidestepped 

what expected  free energy actually is. Like variational  free energy, the expected 

 free energy can be decomposed in several, mathematically equivalent ways. 

Each of  these provides an alternative perspective on this quantity.

G(π ) = − EQ ( !x, !y |π )[DKL[Q( !x | !y,π ) ||Q( !x |π )]]
Information gain

! "####### $#######
− EQ ( !y |π )[ ln P( !y |C)]

Pragmatic value
! "### $###

= EQ ( !x |π )[H[P( !y | !x)]]
Expected ambiguity

! "### $###
+ DKL[Q( !y |π ) || P( !y |C)]

Risk (outcomes)
! "#### $####

≤ EQ ( !x |π )[H[P( !y | !x)]]
Expected ambiguity

! "### $###
+ DKL[Q( !x |π ) || P( !x |C)]

Risk (states)
! "#### $####

= − EQ ( !x, !y |π )[ ln P( !y, !x |C)]
Expected energy

! "#### $####
− H[Q( !x |π )]

Entropy
! "# $#

Q( !x, !y |π ) !Q( !x |π )P( !y | !x)  

(2.6)

The first of  these is perhaps the most useful, intuitively, as it expresses 

the value of seeking new information (i.e., exploration) in exactly the same 
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units (nats) as the value of seeking preferred observations (i.e., exploitation), 

dissolving the classic exploit- explore dilemma in behavioral psy chol ogy. By 

minimizing expected  free energy, the relative balance between  these terms 

determines  whether be hav ior is predominantly explorative or exploitative. 

Note that pragmatic value emerges as a prior belief about observations, 

where the C- parameter includes preferences. The (potentially unintuitive) 

link between prior beliefs and preferences is unpacked in chapter  7; for 

now, we note that this term can be treated as an expected utility or value, 

 under the assumption that valuable outcomes are the kinds of outcomes 

that characterize each agent (e.g., a body temperature of 37°C).

The information gain term inherits from the divergence we considered in 

section 2.5, which ensures that  free energy is an upper bound on surprise. 

However,  there is a twist: instead of minimizing the divergence, we want to 

select policies that maximize the expected divergence— hence, information 

gain. This switch is due to the fact that we are now taking an average of the 

log probabilities over outcomes that have yet to be observed. This is a subtle 

point that can be understood in terms of outcomes switching their roles. 

When evaluating the  free energy of outcomes, the outcomes are the conse-

quences. However, when evaluating the expected  free energy, the outcomes 

play the role of  causes in the sense they are variables that are hidden in the 

 future but explain decisions in the pre sent.

The ensuing information gain penalizes observations for which  there 

is a many- to- one mapping from observations to states—in the sense that 

one can obtain the same observations in dif fer ent states—as this precludes 

precise belief updating. In artificial intelligence and robotics, states that 

bring the same observation (e.g., two T- junctions of a maze that look identi-

cal) are sometimes called aliased and are generally hard to deal with using 

 simple methods (i.e., stimulus- response, with no inference or memory). 

The prob lem is that we cannot know which state we occupy from current 

observations alone. Active Inference avoids getting into such situations in 

the first place, given their low potential for information gain.

A  simple example may help unpack the distinction between information 

gain (or epistemic value) and pragmatic value and highlight why, in most 

realistic situations, pragmatic and epistemic values need to be pursued in 

tandem. Imagine a person who wants an espresso and knows that  there are 

two good cafes in the town: one that opens only from Monday to Friday and 

another that opens only during the weekend. If he does not know what day 
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of the week it is, he has to first select an action that has epistemic value and 

resolves his uncertainty (i.e., an epistemic action to look at the calendar)— 

and only  after that select an action that carries pragmatic value and brings 

the reward (i.e., a pragmatic action to go to the correct cafe). This scenario 

illustrates the fact that in most uncertain situations, one must first perform 

epistemic actions to resolve uncertainty before confidently selecting a prag-

matic action. Policy se lection methods that fail to consider the epistemic 

affordance of choices can only select policies by using random number 

generators— and  will often miss out on their espresso. Therefore, schemes 

that consider only pragmatic value are generally restricted to situations with 

no epistemic uncertainty, such as in the case of a person who already knows 

the day of the week and hence can head directly to the correct cafe.

The second decomposition in equation 2.6 is in terms of risk and expected 

ambiguity.  These terms are the analogues of complexity and inaccuracy: risk 

is the expected complexity, and ambiguity is the expected inaccuracy. Risk, 

a common notion in economics, corresponds to the fact that  there can be 

a one- to- many mapping between policies and their consequences—in the 

sense that one can obtain several dif fer ent outcomes (by chance)  under the 

same policy. One example is a gambling scenario with stochastic rewards 

(e.g., a one- armed bandit, aka a slot machine), wherein one could know the 

reward distribution— say, that one  will obtain reward 10  percent of the time. 

This is called a risky situation in economics  because,  after the same move 

(pulling a lever), one could obtain two dif fer ent observations (reward or no 

reward). This means one has to choose policies or plans that accommodate 

uncertainty. In risk- sensitive schemes— like active inference— the game is 

to choose policies whose probabilistic outcomes match, in the sense of a 

KL- Divergence, one’s prior preferences. In short, minimizing complexity 

cost becomes minimizing risk when both are mea sures of departure from 

prior beliefs.

Similarly, ambiguity corresponds to the expected inaccuracy due to an 

ambiguous mapping between states and outcomes. A mapping is ambigu-

ous if the distribution of outcomes anticipated is highly dispersed (or entro-

pic) even if we know the states generating them with complete confidence. 

For instance, the probability of heads or tails in a coin flip, conditioned on 

 whether it is sunny or raining,  will be maximally ambiguous as  there is no 

relationship between the weather and the 50-50 chance of heads or tails. 

As such, it would not be pos si ble to gain information about the weather 
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by observing tails. Note that most situations are endowed with both risk 

and ambiguity— which implies a many- to- one mapping between states and 

outcomes and between policies and outcomes. Recall that outcomes (obser-

vations) are the only sort of variable that can be observed. Active Inference 

deals automatically with  these situations,  because expected  free energy 

comprises both risk and ambiguity terms.

The third line of equation 2.6 highlights an alternative formulation of 

the expected  free energy by reexpressing risk as a divergence between beliefs 

about states and preferences defined in terms of states. An appealing fea-

ture of this form is that it may be rearranged into an expected energy and 

entropy in analogy with variational  free energy (equation 2.5). While this 

relationship is attractive, a downside of this formulation is that it assumes 

the state- space is known a priori such that prior preferences may be associ-

ated with states. In most settings, this is not a prob lem, and the choice 

between defining preferences in terms of states or outcomes has  little 

practical relevance. However, common practice is to specify preferences in 

terms of outcomes— allowing the state- space itself to be learned while pre-

serving extrinsic motivation.

In summary, expected  free energy can be decomposed in terms of risk 

and ambiguity and in terms of pragmatic and epistemic values.  These 

decompositions are in ter est ing as they permit a formal understanding of 

the wide variety of situations that Active Inference deals with. Furthermore, 

they facilitate an appreciation of how Active Inference subsumes several 

decision schemes— which may be obtained by ignoring one or more com-

ponents of expected  free energy (figure 2.6). If one removes prior prefer-

ences, the pragmatic value becomes irrelevant, and all action is motivated 

by epistemic affordances— hence such schemes can only  handle the reso-

lution of uncertainty. Once prior preferences are removed, the (negative) 

expected  free energy is variously known as expected Bayesian surprise (in 

the context of attentional exploration) or intrinsic motivation (in the con-

text of autonomous learning). If one removes ambiguity, the resulting 

scheme corresponds to risk- sensitive or KL control in control theory. Fi nally, 

if one removes both ambiguity and prior preferences, the only remaining 

imperative is to maximize the entropy of observations (or states, if using 

the formulation in the third line of equation 2.6). This may be interpreted 

as uncertainty sampling (or keeping one’s options open). Active Inference 

evinces the formal relations between  these schemes and the ( limited) situ-

ations in which they apply.

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



The Low Road to Active Inference 37

Although we have carefully decomposed expected  free energy in a way 

that dif fer ent  people might read this functional,  there is no right or wrong 

way of carving it up. We  will see in the second half of this book why auton-

omous systems of a certain kind must, in virtue of existing, choose actions 

that look as if they are minimizing expected  free energy. This perspective 

means  there is no privileged role for epistemic (explorative) versus pragmatic 

(exploitative) imperatives—or for risk versus ambiguity.  These (possibly 

false) dichotomies are just two sides of the same existential coin.

2.9 At the End of the Low Road

Having introduced the two distinct notions of variational  free energy and 

expected  free energy, we are now in a position to consider what they achieve 

together. This represents an endpoint to the low road into Active Inference, 

starting from the notion of unconscious inference, via the Bayesian brain, 

the duality of perception and action, and fi nally planning as inference.

EXPECTED FREE ENERGY

G(�) = – Q(ỹ | �) [ln P(ỹ | C )] – DKL [Q(ỹ | x) Q (x |�) || Q (ỹ | �) Q (x | �)]
1 2 3 4 5

Q(ỹ | �) [ln P ( ỹ | C )]

= Q(ỹ | �) [DKL [Q(x | ỹ, �) || Q (x | �)]]

DKL [Q( ỹ | �) || P ( ỹ | C )]DKL [Q(ỹ | x) Q (x | �) || Q (ỹ | �) Q (x | �)]

2 3 4 5 1

1

3 4 5

BAYESIAN SURPRISE

OPTIMAL BAYESIAN DESIGN

INTRINSIC MOTIVATION

INFOMAX PRINCIPLE

RISK-SENSITIVE POLICIES

KL CONTROL

BAYESIAN DECISION THEORY

EXPECTED UTILITY THEORY

Figure 2.6
Vari ous schemes that can be derived by removing terms from the  free energy equation. 

The upper panel shows the terms contributing to the expected  free energy. The lower 

panels show the schemes that result from removing prior preferences (1), ambiguity 

(2), or every thing except for the prior preferences. Each of  these quantities appears in 

several dif fer ent fields  under a variety of names, but all can be seen as components of 

the same expected  free energy.
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Variational  free energy is at the core of Active Inference. It mea sures the fit 

between the internal generative model and (current and past) observations. 

By minimizing variational  free energy, creatures maximize their model evi-

dence. This ensures that the generative model becomes a good model of the 

environment and that the environment complies with the model.

Expected  free energy is a way to score alternative policies for planning. 

This is fundamentally prospective—it considers pos si ble  future observations— 

and counterfactual— the pos si ble  future observations are conditioned on the 

policies one could pursue. Expected  free energy mea sures the plausibility of 

action policies relative to preferred ( future) states and observations. By scor-

ing policies in terms of their negative expected  free energy, creatures engag-

ing in Active Inference effectively believe that they pursue the course of 

action for which this quantity is lowest. In psychological terms, this implies 

that a creature’s belief about policies directly corresponds to its intention— 

which it fulfills by acting.

From a conceptual perspective, we can associate minimization of vari-

ational  free energy and expected  free energy with two inferential loops, 

one nested within the other. Variational  free energy minimization is the 

key (outside) loop of Active Inference, which is sufficient to optimize per-

ception and beliefs about policies. An Active Inference agent can also be 

endowed with a generative model of the consequences of its action that 

entails an evaluation of expected  free energy (the inside loop). This ability 

to plan into the  future supports prospective forms of action se lection by 

furnishing probability values for policies (Friston, Samothrakis, and Mon-

tague 2012; Pezzulo 2012).

2.10 Summary

Active Inference is a theory of how living artifacts underwrite their exis-

tence by minimizing surprise—or a tractable proxy to surprise, variational  free 

energy— via perception and action. In this chapter, we have sought to motivate 

this idea starting from a Bayesian treatment of perception as inference and 

extending this to the domain of action. Bayesian inference rests on a genera-

tive model of how sensory observations are generated, which encodes (proba-

bilistically) the organism’s implicit knowledge of the world— formalized as 

prior beliefs and the expected outcomes  under alternative states and policies.
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The specific take of Active Inference forces us to revisit the usual seman-

tics of a prior in Bayesian inference. Expected states are preferred and 

include the organism’s conditions for survival (e.g., niche- specific goal states), 

whereas their opposite— surprising states— are dis- preferred. In this way, 

by fulfilling their expectations, Active Inference agents ensure their own 

survival. Given the impor tant links between the notion of priors and the 

conditions that undergird an organism’s existence, we can also say that in 

Active Inference, the identity of an agent is isomorphic with its priors. This 

terminology  will become more familiar  later in the book.

Note that in this view, surprise (or sometimes surprisal ) is a formal con-

struct of information theory and not necessarily equivalent to a (folk) psy-

chological construct. Roughly, the more the organism’s state differs from 

the prior (which encodes the preferred states), the more it is surprising— 

hence Active Inference amounts to the idea that an organism (or its brain) 

has to actively minimize its surprise to stay alive.  Under certain conditions, 

surprise minimization can be construed as the reduction of the discrepancy 

between the model and the world. More generally, the quantity that is actu-

ally minimized in Active Inference is variational  free energy. Variational  free 

energy is an (upper- bound) approximation to surprise and can be mini-

mized efficiently using chemical or neuronal message passing and informa-

tion that is available to the organism’s generative model.

Importantly, both perception and action minimize variational  free energy 

in complementary ways: by refining their (posterior belief ) estimate and by 

performing actions that selectively sample what is expected. Furthermore, 

Active Inference also minimizes expected  free energy by following policies 

associated with minimal ambiguity and risk. Expected  free energy then 

extends Active Inference to prospective and counterfactual forms of infer-

ence. This completes our journey along the low road to Active Inference. In 

chapter 3, we  will travel the high road, which reaches the same conclusion 

on the basis of first princi ples and self- organization.
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Survival machines that can simulate the  future are one jump ahead of survival 

machines who can only learn on the basis of overt trial and error. The trou ble 

with overt trial is that it takes time and energy. The trou ble with overt error is that 

it is often fatal. Simulation is both safer and faster.

— Richard Dawkins

3.1 Introduction

In chapter 2, we motivated the introduction of  free energy as a means of 

performing approximate Bayesian inference (i.e., the low road to Active 

Inference).  Here, we introduce  free energy from another perspective, that 

of the high road, which inverts that reasoning: it starts from first princi ples 

in statistical physics and the central imperative that organisms must main-

tain their existence— that is, avoid surprising states— and then introduces 

the minimization of  free energy as a computationally tractable solution to 

this prob lem. The chapter discloses the formal equivalence between the 

minimization of variational  free energy and the maximization of model 

evidence (or self- evidencing) in approximate Bayesian inference, revealing 

a connection between  free energy and Bayesian perspectives on adaptive 

systems. Fi nally, it discusses how Active Inference provides a novel first 

princi ple perspective to understand (optimal) be hav ior.

Active Inference is a theory of how living organisms maintain their exis-

tence by minimizing surprise—or a tractable proxy to surprise, variational 

 free energy— via perception and action. By starting from first princi ples, it 

advances a novel belief- based scheme to understand be hav ior and cogni-

tion, which has numerous empirical implications.

3 The High Road to Active Inference
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The high road to Active Inference starts from the premise that, to sur-

vive, any living organism has to maintain itself in a suitable set of preferred 

states, while avoiding other, dis- preferred states of the environment.  These 

preferred states are first and foremost defined by niche- specific evolution-

ary adaptations. However, as we  will see  later, in advanced organisms  these 

can also extend to learned cognitive goals. For example, to survive, a fish 

has to stay in a comfort zone that corresponds to a small subset of all the 

pos si ble states of the universe: it has to stay in  water. Similarly, a  human 

has to ensure that their internal states (e.g., physiological variables like 

body temperature and heart rate) always remain within acceptable ranges— 

other wise they  will die (or more precisely  will become something  else, such 

as a corpse). This acceptable range or comfort zone stipulatively defines the 

characteristic states something has to be in to be that  thing.

Living organisms resolve this fundamental biological prob lem by exert-

ing active control over their states (e.g., of body temperature) at many levels, 

which range from automatic regulatory mechanisms such as sweating (physi-

ology) to cognitive mechanisms such as buying and consuming a drink (psy-

chol ogy) to cultural practices such as distributing air conditioning systems 

(social sciences).

From a more formal perspective, Active Inference casts the biological 

prob lem of—or explanation for— survival as surprise minimization. This 

formulation rests on a technical definition of surprising states from informa-

tion theory— essentially, surprising states index  those outside the comfort 

zone of living organisms. It then proposes  free energy minimization as a 

practical and biologically grounded way for organisms or adaptive systems 

to minimize the surprise of sensory encounters.

3.2 Markov Blankets

An impor tant precondition for any adaptive system is that it must enjoy 

some separation and autonomy from the environment— without which it 

would simply dissipate, dissolve, and thereby succumb to environmental 

dynamics. In the absence of this separation,  there would be no surprise to 

minimize;  there must be something to be surprised and something to be 

surprised about. In other words,  there are at least two  things— system and 

environment— and  these can be disambiguated from one another. A formal 

way to express a separation between a system and the rest of the environ-

ment is the statistical construct of a Markov blanket (Pearl 1988); see box 3.1. 
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In brief, a Markov blanket is the set of variables that mediate all (statistical) 

interactions between a system and its environment. Figure 3.1 illustrates an 

interpretation of a Markov blanket in a dynamic setting.  Here the conditional 

in de pen dences have been supplemented with dynamical constraints, so that 

the flows do not depend upon states on the opposite side of the blanket.

The Markov blanket in figure 3.1 distinguishes states internal to the adap-

tive system (i.e., brain activity) from external states of the environment. 

Furthermore, it identifies two additional states, labeled sensory states and 

active states, which form the blanket that (statistically) separates internal and 

external states. Statistical separation means that if we knew about the active 

and sensory states, the external states would offer no additional information 

about internal states (and vice versa). In a dynamical setting, this is often 

interpreted as saying internal states cannot directly change external states 

but can do so vicariously by changing active states. Similarly, external states 

cannot directly change internal states but can do so indirectly by changing 

sensory states.

This is a restatement of the classical action- perception cycle, wherein an 

adaptive system and its environment can interact (only) through actions 

and observations, respectively. This reformulation has two main benefits. 

Box 3.1
Markov blankets

A Markov blanket is an impor tant recurring concept in this book (Friston 

2019a, Kirchhoff et al. 2018, Palacios et al. 2020). Technically, a blanket (b) is 

defined as follows:

µ ⊥ x |b⇔ p(µ,x |b) = p(µ |b)p(x |b)

This says (in two dif fer ent but equivalent ways) that a variable μ is condition-

ally in de pen dent of a variable x if b is known. In other words, if we know 

b, knowing x would give us no additional information about μ. A common 

example of this is a Markov chain, where the past  causes the pre sent  causes the 

 future. In this scenario, the past may only influence the  future via the pre sent. 

This means no additional information about the  future is gained by finding 

out about the past (assuming we know the pre sent).

To identify a Markov blanket in a system wherein we know the conditional 

dependencies, we can follow a  simple rule. The blanket for a given variable 

comprises its parents (the variables it depends on), its  children (the variables 

that depend on it) and, in some settings, the other parents of its  children.
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First, it formalizes the fact that an adaptive system’s internal states are 

autonomous from environmental dynamics and can therefore resist their 

influences. Second, it scaffolds the way in which adaptive systems mini-

mize their surprise: it highlights the internal, sensory, and active states they 

have access to. Specifically, surprise is defined in relation to sensory states, 

while internal and active state dynamics are the means by which the sur-

prise of sensory states may be minimized.

The key point to notice  here is that the internal states of an adaptive 

system bear a formal relation to external states. This is due to a kind of sym-

metry across the Markov blanket as both influence and are influenced by 

blanket states. A consequence of this is that we can construct conditional 

External states
x· = fx (x, u, y) + ωx

Internal states
µ· = fµ (µ, u, y) + ωµ

Active states
u· = fu (x, u, y) + ωu

Sensory states
y· = fy (µ, u, y) + ωy

b = (u, y)
Blanket states

Figure 3.1
A dynamic Markov blanket, which separates an adaptive system ( here, the brain) 

from the environment. The dynamics of each set of states are determined by a 

deterministic flow specified as a function ( f   ) giving the average rate of change and 

additional stochastic (random) fluctuations (ω ). The arrows indicate the direction of 

influence of each variable over the rates of change of other variables (technically, the 

nonzero ele ments of the associated Jacobians). This is just one example; one can use 

a Markov blanket to separate an entire organism from the environment or nest mul-

tiple Markov blankets within one another. For example, brains, organisms, dyads, 

and communities can be conceived in terms of dif fer ent Markov blankets that are 

nested within one another (see Friston 2019a; Parr, Da Costa, and Friston 2020 for a 

formal treatment). Confusingly, dif fer ent fields use dif fer ent notations for the vari-

ables; sometimes, sensory states are denoted s, external states η, and active states a. 

 Here we have chosen variables for consistency with the other chapters in this book.
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probability distributions for the internal and external states, given the blan-

ket states.  Because  these are conditioned on the same blanket states, we can 

associate pairs of expected internal and external states with one another. In 

other words, on average, the internal and external states acquire a kind of 

(generalized) synchrony— just as we might anticipate on attaching a pen-

dulum to each end of a wooden beam. Over time, as they synchronize, each 

pendulum becomes predictive of the other through the vicarious influ-

ence of the beam (Huygens 1673). Figure 3.2 offers a graphical intuition 

for this relationship. This means that if we can write down in de pen dent 
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Figure 3.2
Association between average internal states of a Markov blanket and distributions 

of external states. Top: Assuming a linear Gaussian form for the conditional prob-

abilities,  these plots show samples from the conditional distribution over external 

and internal states, respectively, given blanket states. The thick black lines indicate 

the average of  these variables given the associated blanket state. Bottom left: The 

same data are plotted to illustrate the synchronization of internal and external states 

afforded by sharing a Markov blanket— here, an inverse synchronization. The dashed 

lines and black cross illustrate that if we knew the average internal state (vertical 

line), we could identify the average external state (horizontal line) and the spread 

around this point. Bottom right: We can associate the average internal state with a 

distribution over the external state.
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distributions over external and internal states given their Markov blanket, 

the two states become informative about one another via this blanket.

This synchrony gives internal states the appearance of representing (or 

modeling) external states— which links back to the idea of surprise mini-

mization introduced in chapter 2. This is  because surprise depends on an 

internal model of how sensory data are generated. To recap, minimizing 

the surprise (negative log probability) of sensory observations becomes 

identical to maximizing the evidence (marginal likelihood) for the model, 

which is just the probability of sensory observations  under that model. This 

notion of surprise minimization can be understood from two equivalent— 

Bayesian and  free energy— perspectives, which we discuss next.

3.3 Surprise Minimization and Self- Evidencing

 Under a Bayesian perspective, an agent with a Markov blanket appears to 

model the external environment in the sense that internal states correspond 

(on average) to a probabilistic representation—an approximate posterior 

belief—of external states of the system (figure 3.2). The dynamics of internal 

states correspond to a form of (approximate) Bayesian inference of exter-

nal states, as their motion changes the associated probability distribution, 

which is afforded by an implicit generative model of how sensations (or 

sensory states in the Markov blanket jargon) are generated. If we reinstate 

the notion of an agent as constituted by internal and blanket states, we can 

talk about an agent’s generative model.

Importantly, the agent’s generative model cannot simply mimic exter-

nal dynamics (other wise the agent would simply follow external dissipative 

dynamics). Rather, the model must also specify the preferred conditions 

for the agent’s existence, or the regions of states that the agent has to visit 

to maintain its existence, or satisfy the criteria for its existence in terms 

of occupying characteristic states.  These preferred states (or observations) 

can be specified as the priors of the model— which implies that the model 

implicitly assumes that its preferred (prior) sensations are more likely to 

occur (i.e., are less surprising) if it satisfies the criteria for existence. This 

means it has an implicit optimism bias. This optimism bias is necessary for 

the agent to go beyond the mere duplication of external dynamics to pre-

scribe active states that underwrite its preferred or characteristic states.

 Under this formulation, one can cast optimal be hav ior (with re spect to 

prior preferences) as the maximization of model evidence by perception and 
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action. Indeed, model evidence summarizes how well the generative model 

fits or explains sensations. A good fit indicates that the model success-

fully accounts for its sensations (this is the descriptive side of inference); at 

the same time, it realizes its preferred sensations, given that they are less 

surprising (this is the prescriptive side of the inference). Such good fit is a 

guarantee of surprise minimization, as maximizing model evidence P( y) is 

mathematically equivalent to minimizing surprise: ℑ( y)   =  −ln P( y).

A way to reformulate the above arguments more succinctly consists in say-

ing that any adaptive system engages in “self- evidencing” (Hohwy 2016). Self- 

evidencing  here means acting to garner sensory data consistent with (i.e., that 

affords evidence to) an internal model, hence maximizing model evidence.

3.3.1 Surprise Minimization as a Hamiltonian Princi ple of Least Action

In the preceding sections, we have asserted that surprise must be minimized 

but have not detailed why this is. Although the details of the under lying phys-

ics of self- evidencing are outside the scope of this book (see Friston 2019b for 

details), we  here provide a brief overview of the princi ples.  These are under-

written by the idea that biological creatures— with Markov blankets— persist 

over time, resisting the dispersive effects of environmental fluctuations. The 

per sis tence of a Markov blanket implies that the distribution of blanket 

states remains constant over time. Simply put, this means that any deviation 

of sensory (or active) states from regions that are highly probable  under this 

distribution must be corrected by the average flow of states (which is just 

the deterministic part of the flow in figure 3.1). Expressing this as a physicist 

might, stochastic (random) systems at steady state engage in dynamics that 

(on average) descend an energy function (or Hamiltonian) that is interpre-

table as a negative log evidence or surprise. This is like a ball rolling down 

a hill from high gravitational potential energy at the top of the hill to low 

energy in a basin. See figure 3.3.

For the system shown on the left of figure  3.3,  every time a fluctua-

tion  causes a move to a less probable state, this is corrected by a move up 

the probability gradient, such that the system occupies probability- dense 

regions a greater proportion of the time. The key insight  here is that this 

system maintains sensory states within a narrow range by minimizing sur-

prise (on average)—in contrast to the system on the right, for which surprise 

grows in def initely.

Surprise minimization permits living organisms to (temporarily) resist 

the second law of thermodynamics, which states that entropy—or the 
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dispersion of systemic states— always grows. This is  because, on average, 

entropy is the long- term average of surprise and, on average, the maximiza-

tion of a log probability of observations is equivalent to minimization of 

(Shannon) entropy:2

H[P(y)]= EP(y )[ℑ(y)]= −EP(y )[ ln P(y)]  (3.1)

Ensuring that a small proportion of sensory states is occupied with 

high probability is equivalent to maintaining a par tic u lar entropy. This is 

a defining characteristic of self- organizing systems, as long recognized by 

cybernetic theories.

From a physiologist’s perspective, surprise minimization formalizes the 

idea of homeostasis. As a sensor value leaves its optimal range, negative 

feedback mechanisms kick in that reverse  these deviations. From a control 

perspective, we can interpret optimal be hav ior in relation to some desired 

steady state probability density. In other words, if we define a distribution 

of preferred outcomes, optimal be hav ior  will involve evolution of the sys-

tem  toward— and maintenance of— that distribution.

As we saw in chapter 2,  free energy is an upper bound on surprise, sug-

gesting that optimal be hav ior can be obtained by minimizing  free energy 
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Figure 3.3
Left: Path taken by a 2- dimensional random dynamical system with a (nonequilib-

rium1) steady state. This can be interpreted as minimizing its surprise, which is shown 

in the contour plot on the right. Right: The center is the least surprising region; the 

circles moving away from the center represent progressively more surprising regions. 

 Middle: In contrast, this plot shows the trajectory of a system starting in the same place 

(5, 5), with random fluctuations of the same amplitude, whose dynamics bear no rela-

tion to surprise. Not only does it enter more surprising regions of space; it also fails to 

achieve any sort of steady state, dissipating in an unconstrained fashion over time. The 

scope of Active Inference is restricted to systems like that on the left— which  counter 

random fluctuations with their average flow and thereby retain their form over time.
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in the face of random fluctuations. Recall that the difference between  free 

energy and surprise is the divergence between an exact posterior proba-

bility (i.e., the distribution of external states given blanket states) and an 

approximate posterior probability (i.e., the distribution over external states 

given average internal states). As such, the motion of internal states can be 

thought of as minimizing the divergence, which then enables active states, 

on average, to minimize the surprise accompanying sensory states. In other 

words, the optimal be hav ior resulting from  free energy minimization is the 

one that is least surprising and follows a path of least Action3 from the cur-

rent state to the desired state— that is, the Hamiltonian princi ple of least 

Action applied to be hav ior.

Figure 3.3 shows a very  simple example of a system equipped with a ran-

dom attractor. This is analogous to a thermostat, which (in cybernetic par-

lance) has a single set- point and cannot learn or plan. Active Inference aims 

to use the same explanatory apparatus to cover much more complex and 

adaptive systems.  Here, the difference between simplest and more complex 

systems can be reduced to the dif fer ent shapes of their attractors— from 

fixed points to increasingly more complex and itinerant dynamics. From 

this perspective, one can understand living organisms as constantly seeking 

a compromise between excessive stability and excessive dispersion— and 

Active Inference aims to explain how such compromise is achieved.

3.4 Relations between Inference, Cognition, and Stochastic Dynamics

The physicist E.  T. Jaynes famously argued that inference, information 

theory, and statistical physics are dif fer ent perspectives on the same  thing 

( Jaynes 1957). In the previous sections, we discussed how Bayesian and 

statistical physics perspectives offer two equivalent ways to understand 

surprise minimization and optimal be hav ior— effectively adding a form of 

cognition to Jaynes’s triad. This equivalence between vari ous schools of 

thought is appealing but can be confusing to  those who are not familiar 

with the respective formalisms, where many dif fer ent words are used to 

refer to the same quantities. To help demystify this, in this section we elab-

orate on the main equivalences between Bayesian and statistical physics 

perspectives and their cognitive interpretations; see  table 3.1 for a summary 

and box 3.2.
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 Table 3.1
Statistical physics, Bayesian inference, and information theory— and their cognitive 

interpretations

Statistical physics 
Bayesian inference and 
information theory Cognitive interpretation

Minimize variational  free 
energy

Maximize model evidence 
(or marginal likelihood); 
minimize surprisal  
(or self- information)

Perception and action

Minimize expected  free 
energy; Hamiltonian 
princi ple of least Action

Infer the most likely  
(or less surprising) course 
of action

Planning as inference

Attain nonequilibrium 
steady- state

Perform approximate 
Bayesian inference

Self- evidencing

Gradient flows on energy 
functions; gradient 
descent on  free energy

Gradient ascent on 
model evidence; gradient 
descent on surprisal

Neuronal dynamics

Box 3.2
 Free energy in statistical physics and Active Inference

The notion of  free energy is widely used in statistical physics to character-

ize (for example) thermodynamic systems. Although Active Inference uses 

exactly the same equations, it applies them to characterize the belief state 

of an agent (in relation to a generative model). Hence, when we talk of an 

Active Inference agent minimizing its (variational)  free energy, we are refer-

ring to pro cesses that change its belief state, not (for example) the particles of 

its body. To avoid misunderstandings, we use the term variational  free energy, 

hence adopting a terminology that is more common in machine learning. 

Another more subtle point is that the concept of  free energy is often used 

in the context of equilibrium statistical thermodynamics. Active Inference 

targets living organisms—or nonequilibrium steady state systems that are 

open— that feature continuous, reciprocal exchanges with the environment. 

This is an exciting novel field (Friston 2019a).
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3.4.1 Variational  Free Energy, Model Evidence, and Surprise

A first impor tant equivalence is between the maximization of model evidence 

(or marginal likelihood) in Bayesian inference and the minimization of 

variational  free energy— both of which minimize surprise. This equivalence 

becomes evident when one appeals to a specific approximate solution to 

intractable prob lems of inference— variational inference. Variational infer-

ence recasts the inference prob lem as an optimization prob lem by minimiz-

ing  free energy. The minimum of the  free energy is the point at which the 

approximation of the exact solution is at its best. Expressing this formally 

sheds light on the relations between the three quantities:

ℑ(y |m)
Surprise
!"# $#

= −ln P(y |m)
Model evidence
!"# $#

≤ DKL Q(x) || P(x |y,m)[ ] − ln P(y |m)
Variational free energy

! "####### $#######
 

(3.2)

In equation 3.2, unlike in chapter 2, we have explic itly conditioned all 

quantities on a model, m, to emphasize that  these depend on the model we 

have (or are) about how y are generated, and the quantities  will vary if dif fer-

ent models are used. The equivalence of  these quantities raises the question 

as to why it is useful to distinguish between them. The main reason is that, 

unlike model evidence, variational  free energy can be minimized efficiently.

Recall from chapter 2 that the variational  free energy is only exactly equiv-

alent to the negative model evidence or surprise when the KL- Divergence 

term becomes zero. This is not always pos si ble, but this can be made close 

to zero. Hence, in the pro cess of finding better and better values for Q (x), 

variational  free energy also approximates surprise more closely. We have said 

this a few times already  because it is impor tant to emphasize the central 

relationship between  free energy and surprise that is the foundation of this 

book. Specifically,  free energy is an upper bound on surprise. It can be the 

same as or greater than surprise— where what is greater than is quantified by 

the KL- Divergence.

An in ter est ing aspect of this is that any system minimizing its sur-

prise, including the very  simple system in figure 3.2, is also minimizing 

a  free energy, where the Q (x) is always set to be equal to the exact pos-

terior probability— that is, setting the KL- Divergence to be zero. One per-

spective on the difference between cognitive and noncognitive systems is 

that the latter always have a zero KL- Divergence, while cognitive systems 

must go through the (perceptual) pro cess of minimizing this term before 

their actions are guaranteed to minimize surprise. Note that minimizing 

the divergence is the only  thing that perception can do. This places a  great 
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deal of emphasis on the motion of internal states, such that the distribution 

they pa ram e terize (figure 3.2) is as close to the exact posterior as pos si ble. 

However, perception cannot minimize the second (evidence) component 

of variational  free energy that corresponds to the  actual surprise,  because it 

cannot change the sensations that have been gathered. Only by acting in 

ways that change sensations can an agent minimize the second (evidence) 

component of variational  free energy and resolve its surprise—or, equiva-

lently, maximize its model evidence. This places emphasis on the motion 

of active states, given internal states, in self- evidencing.

An example helps in illustrating this point. Imagine that your generative 

model predicts a distribution of glucose levels in your blood given levels of 

hunger, with relatively high versus low glucose levels relating to satiation 

and hunger, respectively. In addition, imagine this model ascribes a higher 

prior probability to satiation and therefore to relatively high glucose levels— 

making low glucose levels surprising. Imagine you are initially uncertain 

about your hunger levels and sense low blood glucose. Perception leads to 

the inference that you are hungry and the experience of hunger— closing 

the KL- Divergence. However, perception cannot go further than that to 

reduce your surprise— and the discrepancy between the high level of glucose 

that you expect a priori and the low level of glucose that you sense— because 

it cannot act on your sensations (low glucose) or their  causes (physiology). 

You can only minimize your surprise by acting to change (the hidden source 

of ) the sensations you gather— for example, by eating a dessert.

In sum, perception can minimize variational  free energy by reducing 

the discrepancy between approximate and true posterior but cannot go fur-

ther in minimizing surprise. The next step of surprise minimization entails 

changing the sensations one gathers by acting, which is where inference 

goes beyond perception and becomes active.

3.4.2 Expected  Free Energy and Inference of the Most Likely Trajectory

Another impor tant equivalence is between the minimization of expected 

 free energy and inferring the most likely course of action, or policy. This goes 

beyond specifying the least surprising part of state- space and deals with 

how surprising alternative routes to that part or location may be.  These 

alternative paths are expressed in terms of policies, which are essentially 

trajectories across states. Importantly, in Active Inference the log probabil-

ity of a policy is set proportional to the expected  free energy if that policy 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



The High Road to Active Inference 53

was pursued. This implies that the most probable or least surprising path is 

(set to be) the one that minimizes expected  free energy. This formulation is 

equivalent to the way Action is defined in physics, where it scores the proba-

bility of a path by an integral (or sum) of an energy. While a physical system 

may pursue a space of hy po thet i cal trajectories, the path it actually follows 

is the one for which Action is minimized— that is, Hamilton’s princi ple of 

least Action. This analogy between Active Inference and Hamilton’s princi-

ple of least Action is unpacked in the next section.

3.5 Active Inference: A Novel Foundation to Understand  

Be hav ior and Cognition

In fields like optimal control, reinforcement learning, and economics, the 

optimization of be hav ior results from a value function of states, following 

Bellman’s equation (Sutton and Barto 1998). Essentially, each state (or state- 

action pair) is assigned a value, which represents how good a state is for an 

agent to be in. The value of states (or state- action pairs) is usually learned 

by trial and error, by counting how many times— and  after how much 

time— one obtains reward by starting from  those states. Be hav ior consists 

in optimizing reward acquisition by reaching high- valued states, hence 

capitalizing on learning history.

In contrast, in Active Inference, be hav ior is the result of inference and 

its optimization is a function of beliefs. This formulation unites notions 

of (prior) belief and preference. As discussed above, using the notion of 

expected  free energy amounts to endowing the agent with an implicit prior 

belief that it  will realize its preferences. Hence, the agent’s preference for a 

course of action becomes simply a belief about what it expects to do, and to 

encounter, in the  future—or a belief about  future trajectories of states that it 

 will visit. This replaces the notion of value with the notion of (prior) belief. 

This is an apparently strange move, if one has a background in reinforce-

ment learning (where value and belief are separated) or Bayesian statistics 

(where belief does not entail any value). However, it is a power ful move, for 

at least three reasons.

First, it automatically entails a self- consistent pro cess model of purposive 

(or teleological) be hav ior, which is akin to cybernetic formulations. If we 

endow an Active Inference agent with some prior preference, then it  will 

act to realize such preferences— because this is the only course of action 
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consistent with its prior belief that it  will act to fulfill its expectations. Note 

that the resulting (preferred) course of action, or policy, is directly mea sur-

able in experimental settings, whereas a value function or prior belief needs 

to be inferred and hence is a more indirect, if not tautological, mea sure.

Second, casting be hav ior as a functional of beliefs (probability distribu-

tions) automatically entails notions such as degree of belief and uncertainty. 

 These notions undergird impor tant facets of adaptive action but are not 

directly available in the Bellman formulation. By the same token, this for-

mulation gives more flexibility in modeling sequential dynamics and itin-

erant be hav iors, which are harder to model in terms of a value function of 

states (Friston, Daunizeau, and Kiebel 2009).

Third, in this formulation, optimal be hav ior comes to follow a Hamilto-

nian princi ple of least Action in statistical physics. Indeed, Active Inference 

goes one step further  toward the idea that be hav ior is a function of beliefs: 

it also assumes that it becomes an energy function— and the most likely 

course of action of an Active Inference agent is the one that minimizes  free 

energy. A profound consequence is that living organisms behave according 

to Hamilton’s princi ple of least Action: they follow a path of least re sis tance 

 until they reach a steady state (or a trajectory of states), as exemplified by 

the be hav ior of a random dynamical system (shown in figure 3.3). This is a 

fundamental assumption that distinguishes Active Inference from alterna-

tive theories of be hav ior and cognition based on the Bellman formulation.

It is worth briefly outlining what we mean by drawing analogies between 

Hamiltonian physics and Active Inference. This is intended on three levels. 

The first is that the advance offered by Active Inference to the behavioral 

and life sciences is comparable to the advance Lagrangian4 and Hamiltonian 

formulations offered to Newton’s accounts of mechanics. While Newtonian 

mechanics  were originally formulated in terms of differential equations— 

including Newton’s famous third law expressing the proportionality 

between acceleration and force— a complementary perspective on mechan-

ics was offered by considering what is conserved by dynamical systems. 

Newtonian dynamics can then be derived from  these conservation laws. 

 These offer a perspective on which to base further theoretical advances, and 

they form the basis for parts of stochastic, relativistic, and quantum phys-

ics. Analogously, Active Inference reformulates the sorts of neuronal and 

behavioral dynamics that might previously have been built up from a series 

of differential equations by specifying the quantity— free energy— from 
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which  these dynamics may be derived. Just as dif fer ent sorts of Hamil-

tonians lead to dif fer ent types of physics,  free energies based on dif fer ent 

generative models lead to dif fer ent neuronal and behavioral dynamics.

The second point of connection between Hamiltonian physics and Active 

Inference arises from a more direct association between a Hamiltonian and 

probability mea sures. The idea  here is to associate the conserved Hamilto-

nian with the energy of the system. Remember that the quantities we have 

referred to as energies so far ( here and in chapter 2) have all had the form of 

a negative log probability. This reflects an interpretation of energy as simply 

a mea sure of the improbability of any given configuration of a system. On 

this view, conservation of energy and of probability are equivalent laws. As 

dissipative systems— coupled to external states via a Markov blanket— move 

to states of low energy or high probability, we can directly associate the 

energy or Hamiltonian with surprise. As such, Active Inference is Hamil -

tonian physics applied to a certain kind of system (systems that feature a 

Markov blanket).

The third association between  these formulations is the variational cal-

culus that underwrites the association between energies and dynamics. 

This is most apparent when Hamiltonian physics is expressed as a princi-

ple of least Action, where Action refers to the integral of a Lagrangian over 

a path. Crucially, this Action is a functional of a path.  Here, a path is a 

function of time whose output is the position and velocity of a particle 

on that path at that time. The path followed by a (deterministic) particle 

minimizes this Action. Similarly, Active Inference is predicated on the idea 

that beliefs (themselves functions of hidden states) must minimize a  free 

energy functional. The key point of contact  here is that in both cases, func-

tions (paths or beliefs) must be optimized in relation to functionals (Action 

or  free energy, respectively). This places both in the context of variational 

calculus, which is a branch of mathe matics dedicated to finding extrema of 

functionals. In physics, this leads to the Euler- Lagrange equations. In Active 

Inference, we arrive at variational inference procedures.

3.6 Models, Policies, and Trajectories

In section 3.2, we highlighted that the scope of Active Inference pertains to 

 those systems that enjoy some separation from their environment and saw 

that this translates into the presence of a Markov blanket. In section 3.3, 
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we highlighted that the per sis tence of this blanket requires dynamics that 

(on average) minimize the surprise of (sensory) states. As this may be inter-

preted as self- evidencing, we arrive at the conclusion that be hav ior is deter-

mined by a steady- state distribution that can be interpreted as a generative 

model of how (sensory) data are generated.

This tells us something very impor tant. Each generative model should be 

associated with dif fer ent sorts of be hav ior. As such, dif fer ent sorts of be hav-

ior may be accounted for by specifying dif fer ent generative models— and 

implicitly what that system would find surprising. Furthermore, dif fer ent 

kinds of generative model may correspond to adaptive or cognitive creatures 

having vari ous levels of complexity (Corcoran et al. 2020). Very  simple gen-

erative models of the sort driving the dynamics in figure 3.3 offer a minimal 

sort of cognition, as they cannot entertain the possibility of alternative (or 

counterfactual) trajectories. Further,  these models are shallow, in the sense 

that they afford inference at just one timescale. In contrast, hierarchical gen-

erative models afford inference at multiple timescales. In hierarchical or 

deep models, the dynamics at higher hierarchical levels generally encode 

 things that change more slowly (e.g., the sentence I am reading) and that 

contextualize  things that change faster (e.g., the word I am reading), which 

are represented at lower hierarchical levels (Kiebel et al. 2008; Friston, Parr, 

and de Vries 2017).

What do we need to include in a model to derive more complex be hav-

iors of the sort we would associate with agency and sentient systems? One 

answer to this is the capacity to model alternative  futures, or dif fer ent ways 

in which events might play out— and to select among them. In turn, con-

sidering pos si ble  futures requires a generative model that has some tempo-

ral depth and explic itly represents the consequences of actions. Working 

this into the model  will ensure be hav ior that conforms to the most likely of 

 these  futures. The (counterfactual) capacity to entertain  these alternatives 

may be what separates the steady state associated with sentient systems 

from simpler creatures. When alternative  futures pertain to  things over 

which we have control, we refer to  these as policies or plans. As we saw in 

chapter 2, one way of disambiguating between  these plans is to incorporate 

a prior belief into a model that says that  those policies with the lowest 

expected  free energy are the most plausible. This offers a way of character-

izing a certain kind of system with a Markov blanket at steady state— which 

seems to correspond well to systems like us.
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3.7 Reconciliation of Enactive, Cybernetic, and Predictive Theories  

 under Active Inference

By emphasizing  free energy minimization, Active Inference unites and 

extends three apparently disconnected theoretical perspectives.

First, Active Inference is in keeping with enactive theories of life and 

cognition, which emphasize the self- organization of be hav ior and autopoi-

etic interactions with the environment, which ensure that living organisms 

remain within acceptable bounds (Maturana and Varela 1980). Active Infer-

ence provides a formal framework explaining how living organisms manage 

to resist the dispersion of their states by self- organizing a statistical structure— 

the Markov blanket— that affords reciprocal exchanges between organism 

and environment while also separating (and in a sense protecting the integ-

rity of ) the organisms’ states from external, environmental dynamics.

Second, Active Inference is in keeping with cybernetic theories, which 

describe be hav ior as purposive and teleological. Teleology means that be hav-

ior is internally regulated by a mechanism that continuously tests  whether 

a goal is achieved and, if not, steers corrective actions (Rosenblueth et al. 

1943, Wiener 1948, Ashby 1952, G. Miller et al. 1960, Powers 1973). Simi-

larly, Active Inference agents use both perception and action to minimize 

the discrepancy between preferred and sensed states. Active Inference pro-

vides a normative and  viable description of the minimization pro cess by 

specifying that what is actually minimized is a statistical quantity that the 

agent can measure— variational  free energy— which  under certain condi-

tions corresponds to a prediction error, or the difference between what is 

expected and what is sensed. This implies a formulation of cybernetic con-

trol as a prospective process— which leads us to the next point.

Third, Active Inference is in keeping with theories that describe control 

as a prospective pro cess that rests on a model of the environment— possibly 

physically implemented in the brain (Craik 1943). Active Inference assumes 

that agents use a (generative) model to construct predictions that guide per-

ception and action and to evaluate their  future (and counterfactual) action 

possibilities. This assumption is coherent with the good regulator theorem 

(Conant and Ashby 1970), which says that any controller should have—or 

be— a good model of the environment. Active Inference reconciles  these 

model- based perspectives on brain and be hav ior  under a rigorous charac-

terization in terms of (approximate) Bayesian inference and (variational 
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and expected)  free energy minimization. Furthermore, Active Inference is 

largely coherent with ideomotor theory (Herbart 1825, James 1890, Hoff-

mann 1993, Hommel et al. 2001), which states that action starts with an 

imaginative pro cess, and it is a predictive repre sen ta tion (of action conse-

quences) that triggers actions— not a stimulus, like in stimulus- response 

theory (Skinner 1938). Active Inference casts this idea in an inferential 

framework, in which an action stems from a belief (about the  future); this 

has a number of implications, such as the fact that in order to trigger action, 

one has to temporarily attenuate sensory evidence (which would other wise 

falsify the belief that triggers action) (H. Brown et al. 2013).

The reconciliation of  these frameworks is in ter est ing, as they are often 

considered at odds. For example, self- organization and teleology are often 

seen as incompatible in biology. Furthermore, enactive theories tend to 

de- emphasize repre sen ta tion and control, which is instead a central con-

struct of most theories of model- based inference. Active Inference formal-

izes autopoietic dynamics of adaptive agents from an unusual  angle, which 

si mul ta neously considers self- organization and prediction. By connecting 

dif fer ent perspectives, Active Inference can potentially help us understand 

how they illuminate one another.

3.8 Active Inference, from the Emergence of Life to Agency

Active Inference starts from first princi ples and unfolds them to explain 

be hav ior and cognition expressed by the simplest to the most complex 

forms of adaptive and living systems. In the continuum between sim-

pler and more complex creatures, Active Inference draws a line between 

 those that minimize variational  free energy and  those that also minimize 

expected  free energy.

Any adaptive system that actively samples sensations to minimize varia-

tional  free energy is (equivalently) an agent that actively gathers evidence 

for its generative model, aka a self- evidencing agent (Hohwy 2016).  These 

systems are able to avoid dissipation, self- regulate, and survive by achieving 

set- points provided by basic homeostatic pro cesses.  These systems can gen-

erate complex and diverse forms of be hav ior and can also have very high 

fitness levels (as is already apparent in the case of viruses). Some may have 

hierarchical generative models that permit inferring events that change 

at dif fer ent timescales, from faster (at lower hierarchical levels) to slower 
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(at higher levels)— and hence can develop sophisticated strategies to deal 

with what they experience. However,  these creatures are also fundamen-

tally  limited  because their generative models lack temporal depth—or the 

capacity to plan and consider the  future explic itly (although they can do 

so implicitly, for example, as a result of ge ne tic evolution)— and hence they 

always live in the pre sent.

A generative model endowed with temporal depth opens the door to 

the minimization of expected  free energy—or in psychological terms, plan-

ning. In Active Inference, this entails much more than increased adaptivity: 

it entails at least a primitive form of agency. For an adaptive system, mini-

mizing expected  free energy is equivalent to having the (implicit) prior that 

one is a  free energy minimizing agent— but acts to minimize  free energy in 

the  future. When this (prior) belief enters the generative model, the adap-

tive system becomes able to form beliefs about how it should behave in the 

 future and which trajectories it  will pursue. In other words, it becomes able 

to select among alternative  futures as opposed to simply selecting how to deal 

with the sensed pre sent, as in the simplest agents described above. This tem-

poral depth therefore translates into a psychological depth. To ask about 

the ways living creatures populate the continuum between the simplest 

and most complex adaptive systems— and what forms of Active Inference 

they can express—is an empirical question.

3.9 Summary

The main topics of this chapter can be summarized as follows: Living organ-

isms have to ensure that they only visit their characteristic or preferred 

states. If one defines  these preferred states as expected states, then one can 

say that living organisms must minimize the surprise of their sensory obser-

vations (and maintain an optimal entropy; see box 3.3).

 Doing this requires agents to exercise some autonomy from environ-

mental dynamics and to be equipped with a Markov blanket that separates 

(i.e., expresses a conditional in de pen dence between) their internal states 

and the external states of the environment. Agents within the Markov blan-

ket can engage in reciprocal (action- perception) exchanges with the envi-

ronment.  These exchanges are formally described by the theory of Active 

Inference, where both perception and action minimize surprise. They can 

do so by being equipped with a probabilistic generative model of how their 
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Box 3.3
Entropy minimization and open- ended be hav ior

Active Inference is based on the premise that living organisms strive to main-

tain a relative order (or negative entropy), controllability and predictability, 

despite being immersed in an environment whose natu ral forces generate con-

tinuous fluctuations— and a never- ending threat of entropic erosion. The most 

basic manifestation of this active pursuance of order is physiological homeo-

stasis, with critical physiological par ameters that need to be kept within  viable 

regions. However, minimizing entropy should not be equated with a rigid 

repertoire of responses (e.g., autonomic homeostatic responses) but rather the 

opposite, especially in advanced organisms. We can develop open- ended rep-

ertoires of novel be hav iors to pursue our original homeostatic imperatives— 

for example, to produce and buy good wine to satisfy thirst and other needs. 

This is sometimes referred to as “allostasis” (Sterling 2012).

More broadly, we actively pursue some order and controllability per se, 

without necessary reference to a specific homeostatic imperative— perhaps 

 because preserving order facilitates many such imperatives. We actively carve 

our ecological niches to render them more predictable and less surprising. 

This is evident in the ways we construct our physical spaces (e.g., refuges and 

cities that give shelter from uncontrolled natu ral forces) and cultural spaces 

(e.g., socie ties with laws and deontic norms that give shelter from anarchic 

social forces). In all  these examples, we usually need to accept some short- term 

increase of entropy or surprise (e.g., when we build something new or shift 

social stances) to ensure their long- term decrease. This helps us understand 

how the basic requirement for surprise minimization is not at odds with but 

rather promotes the epistemic imperatives and novelty- seeking, curious, and 

exploratory be hav ior that we recognize as central to many species.

A first way epistemic imperatives become apparent is during the minimiza-

tion of variational  free energy. One of the ways to decompose  free energy is to 

express it as a Gibbs energy expected  under the approximate posterior minus 

the entropy of the approximate posterior. In other words, the agent is striving 

to increase entropy. While this seems paradoxical, the paradox dis appears if 

one considers that this is the entropy of the agent’s (approximate posterior) 

belief. This can be understood as the imperative to explain  things as accurately 

as pos si ble but also “keep options open” and avoid committing to any specific 

explanation  unless this is necessary— that is, the maximum entropy princi ple 

( Jaynes 1957).

A second way epistemic dynamics become apparent is during the mini-

mization of expected  free energy, wherein— interestingly— there are two entro-

pies with opposite signs.  These include the posterior predictive entropy (how 
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sensory observations are generated. This model defines surprise—or better, 

a tractable proxy, variational  free energy, which can be mea sured and mini-

mized efficiently.

An Active Inference agent appears to perform (approximate)  Bayesian in -

ference  under a generative model and to maximize evidence for its model— 

that is, it is a self- evidencing agent. The prospective bit of the inference 

is realized by selecting courses of actions or policies that are expected to 

minimize  free energy in the  future. This formalism leads to a novel view of 

(optimal) be hav ior in terms of the Hamiltonian princi ple of least Action— a 

(first) princi ple that connects Active Inference to the domains of statistical 

physics, thermodynamics, and nonequilibrium steady states.

uncertain I am about what outcomes I would encounter given a choice) that 

must be maximized—as for beliefs about states in the variational  free energy— 

and the conditional entropy of outcomes given states (the ambiguity entailed 

by a policy) that must be minimized. While during the minimization of varia-

tional  free energy the imperative is to maximize entropy of (pre sent) beliefs, 

during the maximization of expected  free energy the imperative is to select 

actions that minimize the ambiguity of ( future) beliefs. This gives rise to epis-

temic, curious, novelty- seeking, and information- foraging be hav iors, which 

support uncertainty resolution or improvement of the generative model— 

which in turn minimizes surprise in the long run (Seth 2013; Friston, Rigoli 

et al. 2015; Seth and Friston 2016; Schwartenbeck, Passecker et al. 2019).

Box 3.3 (continued)
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Every thing should be made as  simple as pos si ble, but not simpler.

— Albert Einstein

4.1 Introduction

This chapter complements the preceding chapters’ conceptual treatment 

of Active Inference with a more formal treatment. Specifically, it sets out 

the relationship between  free energy and Bayesian inference, the form of 

the generative models typically used in Active Inference, and the dynamics 

obtained from minimizing  free energy for  these models. A key focus is on 

how time is represented in a generative model. We  will see the distinction 

between generative models formulated in continuous time and  those that 

treat time as a sequence of events. Fi nally, we set out the idea of inferential 

message passing, which underwrites prominent theories in neurobiology— 

including predictive coding.

4.2 From Bayesian Inference to  Free Energy

In the preceding two chapters, we outlined some of the impor tant connec-

tions between Active Inference and other established paradigms in the neu-

rosciences. In chapter 2, we focused on the notion of the Bayesian brain (Knill 

and Pouget 2004, Doya 2007)— one of its closest relatives— which provides 

a useful way to think about some of the consequences of active inference 

from a more formal perspective. Specifically, it helps us frame the prob lems 

that an agent engaging in Active Inference must solve. Broadly,  these are 

the prob lem of inferring states of the world (perception) and inferring a 

course of action (planning). While it is tempting to equate Bayes optimality 

4 The Generative Models of Active Inference
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with exact Bayesian inference, exact inference is generally computation-

ally intractable or even infeasible. In cognitive psy chol ogy and artificial 

intelligence applications, it is common to consider bounded forms of infer-

ence and rationality. We highlighted some examples in chapter 3.  Under 

a Bayesian framework, this translates into using approximate  inference. 

 These methods comprise sampling methods and variational  methods—on 

which active inference is based. In this section, we recap the basic ele ments 

of Bayesian inference and its variational manifestations (Beal 2003, Wain-

wright and Jordan 2008). In  doing so, we hope to provide some intuition 

for the role of  free energy and to emphasize the importance of generative 

models in drawing inferences about the world.

This chapter is more technical than chapters 1–3, appealing to a  little 

linear algebra, differentiation, and the Taylor series expansion.  Those read-

ers interested in the details or in need of a refresher may turn to the appen-

dices for the requisite background.  Those who do not want to delve into the 

theoretical under pinnings may skip this chapter. Throughout, we explain 

the key implications of each equation—so it should be pos si ble to develop 

an understanding of the impor tant conceptual points herein even without 

following the formal argument.

A good place to start is Bayes’ theorem. Recall from chapter 2 that this 

theorem expresses an equality between the product of a prior and a like-

lihood and the product of a posterior and a marginal likelihood. This is 

reproduced in equation 4.1:

P x( )P y |x( ) = P x| y( )P y( )
P y( ) = P y,x( )

x∑ = P y |x( )P x( )
x∑  

(4.1)

The first line of equation 4.1 is Bayes’ theorem. The second line shows 

that the marginal likelihood (or model evidence), P( y), can be computed 

directly from the prior and likelihood.1 This makes the point that the prior 

and likelihood— which together comprise the generative model— are suf-

ficient for us to compute the model evidence and the posterior probability. 

Despite this, it is not always easy to do so. The summation (or integration, 

if dealing with continuous variables) in equation 4.1 can be computation-

ally or analytically intractable. One way to resolve this— the starting point 

of variational inference—is to convert this potentially difficult integration 

prob lem into an optimization prob lem. To understand how this works, we 

need to appeal to Jensen’s in equality, which says that “the log2 of an average 
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is always greater than or equal to the average of a log.” Figure 4.1 provides 

a graphical intuition for why this is the case.

To take advantage of this property, we can rewrite equation 4.1 by multi-

plying the term inside the sum on the second line by an arbitrary function 

(Q ) divided by itself (this is equivalent to multiplying by one, so the equal-

ity still holds) and taking the log of each side. Mathematically, this changes 

nothing. However, we can now interpret the expression as an expectation 

(E)3 of a ratio between two probabilities and so exploit Jensen’s in equality:

ln P(y) = ln P(y,x)
x
∑ Q(x)

Q(x)

= lnEQ (x)
P(y,x)
Q(x)

⎡
⎣
⎢

⎤
⎦
⎥ ≥ EQ (x) ln

P(y,x)
Q(x)

⎡
⎣
⎢

⎤
⎦
⎥ ! −F[Q ,y]

 

(4.2)

The second line of this equation uses the fact that we have a log expecta-

tion and that, by Jensen’s in equality, this must always be greater than or 

equal to the expectation of the log. This move is sometimes referred to as 

lnx2

lnx1

x1 x2

ln [x]

≥ [ln x]

[x]

Figure 4.1
Logarithmic function providing intuition for Jensen’s in equality. If we had only two 

data- points (x1 and x2),  either we could take their average (E[x]) and then find its log, 

or we could take the log of each data- point and then take the average of  these (E[ln x]). 

The latter (E[ln x])  will always be below the former (ln E[x]), due to the concavity of 

the logarithmic function,  unless the data- points are the same (wherethe log of the 

average and the average of the log are equal). This in equality holds for any number 

of data- points.
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importance sampling. The right- hand side of this in equality is known as the 

(negative) variational  free energy:4 the smaller the  free energy, the closer it 

is to the negative log model evidence. With this in mind, we can rewrite 

Bayes’ theorem (equation 4.1) in logarithmic form, take its average  under 

the posterior distribution, and disclose the relationship between this and 

the quantities of equation 4.2:

ln P(x,y) = ln P(y) + ln P(x | y) ⇒
EP(x |y )[ ln P(x,y)]= ln P(y) + EP(x|y )[ ln P(x | y)]

EQ (x)[ ln P(x,y)]= −F[Q ,y]+ EQ (x)[ lnQ(x)]  

(4.3)

The second line follows from the fact that the log probability of y is not 

a function of x, so taking an expectation  under the posterior distribution 

does not change this quantity. Equation 4.3 provides some intuition for 

the roles of the  free energy and the Q distribution— the two quantities that 

 were difficult to compute without the variational approximation. The for-

mer plays the role of the negative log model evidence, while the latter acts 

as if it  were the posterior probability. More formally, we can rearrange the 

 free energy as we did in chapter 2 to quantify the relationship between  free 

energy and model evidence:

F[Q ,y]= DKL[Q(x) || P(x | y)]
Divergence

! "### $###
− ln P(y)

Log model evidence
!"# $#

DKL[Q(x) || P(x | y)]= EQ (x) lnQ(x) − ln P(x | y)[ ]  
(4.4)

The first line of equation 4.4 shows the  free energy expressed in terms of a 

KL- Divergence and a negative log evidence. The KL- Divergence is defined 

in the second line as the expected difference between two log probabilities. 

This is often used as a mea sure of how dif fer ent two probability distribu-

tions are from one another.

Sometimes, the use of  free energy is motivated directly in terms of this 

divergence. The argument goes that if our aim is to perform approximate 

Bayesian inference, we need to find an approximate posterior that best 

matches the exact posterior. As such, we can select a mea sure of the diver-

gence between the two—of which the KL- Divergence in equation 4.4 is one 

example— and minimize this. As we do not know the exact posterior, we 

cannot use this divergence directly. One solution is to add the log evidence 

term, which may be combined with the log posterior to form the joint 

probability (which we do know  because this is the generative model). The 

result is the  free energy.
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An in ter est ing consequence of this perspective is that  there is some 

ambiguity over which divergence mea sure to use. If we want to make the 

approximate and exact posterior as close as pos si ble, we could use the other 

KL- Divergence, where Q and P are swapped, or choose from a large  family 

of divergences, each of which emphasizes dif fer ent aspects of the difference 

between distributions. However, the ideas set out in chapter 3 highlight 

the importance of self- evidencing for systems engaging in Active Inference. 

Therefore, we are primarily looking for a tractable evidence maximization 

scheme and only secondarily looking to minimize the divergence. From 

this perspective,  there is no ambiguity as to which divergence mea sure to 

use. This emerges from the use of Jensen’s in equality.

4.3 Generative Models

To calculate the  free energy, we need three  things: data, a  family of varia-

tional distributions, and a generative model (comprising a prior and a likeli-

hood). In this section, we outline two very general sorts of generative model 

used for Active Inference and the form the  free energy takes in relation to 

each. The first deals with inferences about categorical variables (e.g., object 

identity) and is formulated as a sequence of events. The second deals with 

inferences about continuous variables (e.g., luminance contrast) and is for-

mulated in continuous time using stochastic differential equations. Before 

specifying the details of  these models, we review a graphical formalism that 

expresses the dependencies implied by a generative model.

Figure  4.2 shows several examples of generative models expressed as 

 factor graphs, chosen to provide some intuition for the sorts of  things that 

may be articulated in this way.  These represent the  factors (e.g., prior and 

likelihood) of a generative model as squares and the variables in that model 

(hidden states or data) in circles. Arrows indicate the direction of causal-

ity between  these variables. The upper- left graph shows the simplest form 

 these models can take, with a hidden state (x) causing data ( y). The prior 

in this model is shown as  factor 1, and the likelihood is  factor 2. The other 

graphs extend this idea by introducing additional variables. In the upper 

right, z plays the role of a second hidden state, so that y depends on the 

states of both x and z.

As an example, consider a clinical diagnostic test. In this setting, the  simple 

graph in the upper left can be interpreted as the presence or absence of a 
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disease (x) and the result of the test ( y). The prior is then the prevalence of 

the disease, while the likelihood specifies the properties of the test.  These 

include its specificity (the probability of a negative result in the absence of 

the disease) and sensitivity (the probability of a positive result in the presence 

of the disease). We can then think of the model in terms of the mechanism 

by which a test result is obtained— going from the top to the bottom of the 

 factor graph. First, we sample a person from a population with known preva-

lence of a disease. If they have the disease, they  will generate a true positive 

test result with probability given by the test sensitivity, and a false negative 

other wise. If they do not have the disease, they  will generate a true negative 

with probability given by the specificity, and a false positive other wise.

Pursuing the same example, we can interpret the other  factor graphs. In 

the upper- right panel, x and z could be the presence or absence of two dif-

fer ent diseases,  either of which could give a positive test result. In the lower 

left, w plays the role of data. Both y and w are generated by x and could 

represent (for example) two dif fer ent diagnostic tests that are informative 

y

2

x

1

1

2

P(x)

P(y | x)

y

2

x

1

1

2

P(x)

P(y | x, z)
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3 P(z)
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2
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1

1
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P(y | x)3
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2

v

1

1

2

P(v)

P(y | x)

3 x

3 P(x | v)

Figure 4.2
Dependencies between variables in a (graphical) probabilistic model. The circles rep-

resent random variables (i.e., the  things about which we hold beliefs); the squares 

represent the probability distributions that describe the relationships between  these 

variables. An arrow from one circle to another via a square indicates that the variable 

in the second circle depends on that in the first circle and that this de pen dency is 

captured in the probability distribution represented by the square.
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about the same disease pro cess. Fi nally, the lower- right graph treats both 

x and v as hidden states but introduces a hierarchical structure in which v 

 causes x  causes y.  Here we could think of v as providing a context or a pre-

disposing  factor (e.g., ge ne tic polymorphism) for the presence or absence of 

disease x, which may be tested for by mea sur ing y. In princi ple, we can add 

an arbitrary number of variables to this hierarchy.

Generative models of this sort are often used for static perceptual tasks, 

such as object recognition or cue integration. The generative models used 

for active inference differ in an impor tant way: they evolve over time as 

new observations are sampled, and the observations that are added depend 

(via action) on beliefs about variables in the model. This has two key impli-

cations. First, the conditional dependencies include the dependencies of 

hidden variables at a given time on  those at previous times. Second,  these 

models sometimes include hypotheses about “how I am acting” as hidden 

variables.

Figure 4.3 illustrates the two basic forms of dynamic generative model 

used in active inference (Friston, Parr, and de Vries 2017) in  factor graph 

form (Loeliger 2004, Loeliger et al. 2007). The upper graph shows a Partially 

Observable Markov Decision Pro cess (POMDP), which expresses a model in 

which a sequence of states (s) evolves over time. At each time step, the cur-

rent state is conditionally dependent on the state at the previous time and 

on the policy (π ) currently being pursued. Policies  here may be thought of 

as indexing alternative trajectories, or sequences of actions, that could be 

followed. Each time- point is associated with an observation (o) that depends 

only on the state at that time. This sort of model is very useful in dealing 

with sequential planning tasks— for example, navigating a maze (Kaplan and 

Friston 2018)—or decision- making pro cesses that involve selecting between 

alternatives (e.g., categorization of a scene [Mirza et al. 2016]).

The lower graph in figure 4.3 shows a very similar graphical model but 

expressed in continuous time. In place of representing a trajectory as a 

series of states, this model represents the current position, velocity, and 

acceleration (and successive temporal derivatives) of a state (x).  These val-

ues (referred to as generalized coordinates of motion) can be used to recon-

struct a trajectory using a Taylor series expansion (see appendix A for an 

introduction to Taylor series approximations in this context). The relation-

ship between a state and its temporal derivative  here depends on (slowly 

varying)  causes (v) that play a similar role to the policies above. As before, 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



70 Chapter 4

states generate observations ( y). The difference in notation (s, π, o vs. x, v, y) is 

used to emphasize the difference between categorical variables that evolve 

in discrete time and continuous variables that evolve in continuous time. 

Similarly, from  here on, we  will use lowercase p and q for probability den-

sities over continuous variables and uppercase P and Q for distributions 

over categorical variables. Sections 4.4 and 4.5  will unpack  these models 

in more detail and  will show how minimization of  free energy in each 

case leads to a set of equations that describes the dynamics of inferential 

pro cesses.

2
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xʹ xʺ

y yʹ yʺ

2

3 3

1

v

3
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2

3

2 2 2

3 3
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P(oτ | sτ)

P(sτ+1 | sτ, �)

P(v)

P(y | x)

P(xʹ | x, v)

2
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sτ–1 sτ+1sτ

oτ–1 oτ+1oτ

Figure 4.3
Two dynamic generative models (using the same graphical notation as in figure 4.2) 

that we  will appeal to throughout the remainder of this book. Top: Partially Observ-

able Markov Decision Pro cess (POMDP), defined in terms of a sequence of states 

evolving through time (indexed by the subscript). Bottom: Continuous- time model, 

of the sort implied by stochastic differential equations (with the prime notation indi-

cating temporal derivatives).
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4.4 Active Inference in Discrete Time

In this section, we focus on the discrete- time model outlined above. This is 

impor tant for understanding a range of cognitive pro cesses that deal with 

categorical inferences and se lection between alternative hypotheses. This 

formalism additionally facilitates an examination of the classic exploitation- 

exploration prob lem and illustrates how active inference resolves this.

4.4.1 Partially Observable Markov Decision Pro cesses

As shown in figure 4.3, a POMDP expresses the evolution over time of a 

sequence of hidden states that depend on a policy. To specify this pro cess 

formally, we need to account for the form of each of the square  factor nodes 

in the figure. First, we describe each of  these  factors. We then combine them 

to express the joint distribution that constitutes the generative model.

As with the  simple example of Bayes’ rule given in chapter 2, we can 

separate the  factors into  those representing a likelihood and  those com-

bining to make a prior. The likelihood is similar to that used before and 

expresses the probability of an outcome (observable) given a state (hidden). 

If both the outcomes and states are categorical variables, the likelihood is a 

categorical distribution, pa ram e terized by a matrix, A:

P(oτ | sτ)   =  Cat(A)

Aij   =  P(oτ  =  i | sτ  =  j) 
(4.5)

The second line  here details what is meant by the Cat notation (i.e., specifi-

cation of a categorical distribution). This accounts for the nodes labeled “2” 

in figure 4.3. The prior over the sequence (expressed using the ~ symbol) of 

hidden states depends on two  things: the prior over the initial state (speci-

fied by a vector, D) and beliefs about how the state at one time transitions 

to that at the next (specified as a matrix, B):

P( !s |π ) = P(s1) P(sτ +1|sτ ,π )
τ =1
∏

P(s1) = Cat(D)

P(sτ +1| sτ ,π ) = Cat(Bπτ )  

(4.6)

Together,  these account for the “3” nodes in figure 4.3. Note that the tran-

sitions are conditionally dependent on the policy chosen. Thus, we can 

interpret the priors of equation 4.6, combined with the likelihood of equa-

tion 4.5, as expressing a model (π ) of a behavioral sequence. To allow us 

to select between  these models (i.e., to form a plan), we need a prior belief 
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about the most probable sequence. For a  free energy minimizing creature, 

a self- consistent prior is that the most probable policies are  those that  will 

lead to the lowest expected  free energy (G) in the  future:

P(π ) = Cat(π0 )

π0 = σ (−G)

Gπ =G(π ) =−E !Q[DKL[Q( !s | !o,π ) ||Q( !s|π )]]− E !Q[ln P( !o |C)]

!Q(oτ , sτ |π ) ! P(oτ | sτ )Q(sτ |π )  

(4.7)

This equation, being of fundamental importance to Active Inference, is worth 

unpacking in more depth. The first two lines express the prior probability for 

each policy, as pa ram e terized by π 0, as being related to the negative expected 

 free energy associated with that policy. The softmax function (σ ) enforces nor-

malization (i.e., ensures that the probability over policies sums to one). The 

final two lines of equation 4.7 express the form of the expected  free energy.

Note the similarity between this and the functional form of the  free energy 

(equation 4.4)— with a log probability of outcomes and a KL- Divergence. The 

key difference  here is that the expectation is taken with re spect to the posterior 

predictive density as defined by the final equality. This distribution expresses 

a joint probability over  future states and observations. Crucially, this means 

we can compute the expected  free energy in the  future— something we could 

not do with the variational  free energy, which depends on (pre sent and past) 

observations. In addition, note the distribution over outcomes depends on 

par ameters (C ) and the reversal of the sign of the KL- Divergence, which is a 

consequence of the expectation  under the posterior predictive probability. 

This last point can cause some confusion, so it is worth spelling out explic itly 

why this is. In the context of the variational  free energy, the KL- Divergence 

was the expected difference between the log probability of the approxi-

mate posterior and the log probability of the exact posterior (equation 4.4). 

The analogous term in the expected  free energy is the expected difference 

between the approximate posterior and the exact posterior we would get on 

the basis of the entire trajectory of outcomes, using current posterior beliefs 

as if they  were priors. Unpacking this, we get the following:

E !Q lnQ !s |π( ) − lnQ !s | !o,π( )⎡⎣ ⎤⎦

= EQ !o|π( ) EQ !s| !o,π( ) lnQ !s |π( ) − lnQ !s | !o,π( )⎡⎣ ⎤⎦⎡
⎣

⎤
⎦

= −EQ !o |π( ) EQ !s| !o,π( ) lnQ !s | !o,π( ) − lnQ !s |π( )⎡⎣ ⎤⎦⎡
⎣

⎤
⎦

= −EQ !o |π( ) DKL[Q( !s | !o,π ) ||Q( !s |π )][ ]  

(4.8)
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 Here we see that the order in which must take expectations is impor tant. 

It prompts a reversal in sign relative to the analogous term in the varia-

tional  free energy. This underwrites an impor tant difference between the 

two quantities. The expected  free energy is minimized by selecting  those 

observations that cause a large change in beliefs, in contrast to the varia-

tional  free energy that is minimized when observations comply with cur-

rent beliefs. This is the difference between optimizing beliefs in relation to 

data that have already been gathered (variational  free energy minimization) 

and selecting  those data that  will best optimize beliefs (expected  free energy 

minimization).

This reiterates that Active Inference uses two constructs, variational  free 

energy (F ) and expected  free energy (G), which are mathematically related 

but play distinct and complementary roles. Variational  free energy is the 

primary quantity that is minimized over time. It is optimized in relation 

to a generative model, which can include policies (or action sequences). As 

with all other hidden states, the agent needs to assign a prior probability to 

policies— because policies are just another random variable in the genera-

tive model. Active Inference uses a prior that is (loosely speaking) equiva-

lent to the belief that one  will minimize  free energy in the  future: that is, 

the expected  free energy. In other words, expected  free energy furnishes a 

prior over policies and is therefore a prerequisite in minimizing variational 

 free energy.

In chapter 2 we saw that, as with the variational  free energy, the expected 

 free energy can be rearranged in a number of ways to disclose vari ous inter-

pretations.  Here, we focus on an interpretation as the difference between 

the risk and the ambiguity associated with a policy. This is equivalent to the 

expression in equation 4.7:

G(π ) = −E !Q[DKL[Q( !s | !o,π ) ||Q( !s |π )]]

Information gain
! "##### $#####

− E !Q[ln P( !o |C)]

Pragmatic value
! "## $##

= E !Q[H[P( !o | !s)]]

Expected ambiguity
! "## $##

+ DKL[Q( !o |π ) || P( !o |C)]
Risk

! "#### $####

 

(4.9)

Recall from chapter 2 that the first of  these expresses the trade- off between 

seeking new information (i.e., exploration) and seeking preferred observa-

tions (i.e., exploitation). By minimizing expected  free energy, the relative 

balance between  these terms determines  whether be hav ior is predomi-

nantly explorative or exploitative. Note that pragmatic value emerges as a 

prior belief about observations, where the C- parameters of this distribution 
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may be chosen to reflect the sort of system we are interested in characteriz-

ing (in terms of its characteristic or preferred outcome states). Following the 

second line of equation 4.9, we can rewrite equation 4.7 in linear algebraic 

form as follows:

π0 = σ (−G)

Gπ = H i sπτ + oπτ i ςπτ

ςπτ = lnoπτ − lnCτ

H = −diag(A i lnA)

P(oτ |C) = Cat(Cτ )

Q(oτ | π ) = Cat(oπτ ), oπτ = Asπτ
Q(sτ |π ) = Cat(sπτ )

Q(sτ ) = Cat(sτ ), sτ = ππsπτπ∑  

(4.10)

The first line of equation 4.10 uses a softmax (normalized exponential) 

operator to construct a probability distribution (pa ram e terized with suf-

ficient statistics π 0) that sums to one from the expected  free energy vector. 

Lines two to four express the components of the expected  free energy in lin-

ear algebraic notation. The fifth line shows that the prior belief about obser-

vations is a categorical distribution (whose sufficient statistics are given in 

the C vector). The sixth to eighth lines specify the relationship between 

the linear algebraic quantities and the associated probability distributions. 

Having completed the specification of the generative model, we can now 

express the  free energy in terms of the variables above:

F = π i F

Fπ = Fπττ∑
Fπτ = sπτ i (lnsπτ − lnA i oτ − lnBπτsπτ −1)  

(4.11)

The decomposition of this into a sum over time is due to the implicit mean- 

field approximation that assumes we can factorize the approximate poste-

rior into a product of  factors:

Q !s |π( ) = Q sτ |π( )
τ∏  (4.12)

In logarithmic form, this becomes a sum, just as in equation 4.11. This 

factorization is one of many possibilities in variational inference— and rep-

resents the simplest option. In practice, this is often nuanced slightly, as 

detailed in appendix B.
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4.4.2 Active Inference in a POMDP

Hitherto, we have defined the four key ingredients for a discrete- time gen-

erative model.  These are the likelihood (A), transition probabilities (B), prior 

beliefs about observations (C), and prior belief about the initial state (D). 

Once  these probability distributions are specified, a generic message passing 

scheme can be employed to minimize  free energy and solve the POMDP. To 

make inferences about hidden states  under a given policy, we set the rate 

of change of an auxiliary variable (v), which stands in for the log posterior 

(s), to be equal to the negative  free energy gradient. A softmax (normalized 

exponential) function is then used to compute s from v.

sπτ = σ (vπτ )

v. πτ = επτ ! −∇sFπτ
= lnA i oτ + lnBπτsπτ −1 + lnBπτ +1 i sπτ +1 − lnsπτ

 

(4.13)

Equation 4.13 can be regarded as an example of variational message 

passing (see box 4.1). To update beliefs about policies, we find the posterior 

that minimizes the  free energy:

∇π F = 0 ⇔
π = σ (−G − F)

 
(4.14)

For the simplest form of POMDP, equations 4.13 and 4.14 can be used to 

solve an Active Inference prob lem for any set of probability matrices;  these 

may be thought of as describing perception and planning, respectively. We 

 will unpack this in greater detail in the second part of the book, where we  will 

provide worked examples of Active Inference for perception and planning 

(and other cognitive functions).

Figure 4.4’s graphical repre sen ta tions of equations 4.10, 4.13, and 4.14 

hint at pos si ble neuronal implementations of  free energy minimization in 

the brain—if one interprets nodes as neuronal populations, edges as syn-

apses, and messages as synaptic exchanges. In  later chapters we  will consider 

the extension of this to factorized state- spaces, deep temporal models, and 

the optimization of the par ameters of the generative model itself (learning).

4.5 Active Inference in Continuous Time

In the previous section, we dealt with the form Active Inference takes  under 

a par tic u lar choice of generative model.  These POMDPs are a useful way to 
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Box 4.1
Message passing and inference

Markov blankets

We encountered the concept of a Markov blanket in chapter 3. However, it is 

worth briefly reviewing the idea  here. It relates to a system of multiple inter-

acting variables. A Markov blanket for a given variable comprises a subset of 

 those that interact with it. If we know every thing about this subset, knowl-

edge of anything outside this subset does not increase our knowledge of the 

variable of interest. The relevance  here is that we can draw inferences about 

a variable in a graphical model based on local information about its Markov 

blanket. The blanket of a variable x are  those variables that cause x ( parents, 

ρ(x)), the variables that are caused by x ( children, κ (x)), and the parents of x’s 

 children. Using this notation, two of the most common Bayesian message 

passing schemes used for approximate inference are defined as follows:

Variational message passing

lnQ(x) = EQ (ρ(x))[ ln P(x |ρ(x))]+ EQ (κ (x))Q (ρ(κ (x)))
Q (x)

[ ln P(κ (x)|ρ(κ (x)))]

This involves messages from all constituents of the Markov blanket of x, 

including the parents (via the conditional probability of x given its parents) 

and the  children. The latter depends on the conditional probability of the 

 children of x given all of their parents— which include x. Note the expecta-

tion includes the  children and parents of the  children. As the parents of the 

 children include x, we divide by Q(x) to ensure the expectation includes the 

blanket only.

Belief propagation

lnQ(x) = lnµκ (x)+ lnµρ (x)

µκ (x) = Eµκ (κ (x))µρ (κ (x))

µx (κ (x))

[P(κ (x)|ρ(κ (x)))]

µρ (x) = Eµρ (ρ(x))µκ (ρ(x))

µx (ρ(x))

[P(x |ρ(x))]

This has broadly the same structure as variational message passing but uses 

a recursive definition of messages such that each message ( μa(b) being the 

message to b from a) depends on other messages (the messages to a).  There is 

a directional aspect to this, such that the message from a to b depends on all 

messages to a, except for that from b (hence the division in the expectations). 

NB: The slightly nonstandard use of the expectation operator  here allows us to 

(1) cover both discrete and continuous variables and (2) highlight the formal 

similarity between variational message passing and belief propagation.
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Figure 4.4
Bayesian message passing. Right: Dependencies between dif fer ent variables in the 

belief- updating scheme outlined in the main text. Intuitively, current beliefs about 

states ( under each policy) at each time are compared with  those that would be pre-

dicted given beliefs about states at other times (1) and current outcomes to calcu-

late prediction errors.  These errors then drive updating in  these beliefs (2); given 

beliefs about states  under each policy, we can then calculate the gradients of the 

expected  free energy (3).  These are combined with the outcomes predicted  under 

each policy (omitted from the figure) to compute beliefs about policies (4). Using a 

Bayesian model average, we can then compute posterior beliefs about states averaged 

over policies (5). This high- level summary of message passing omits some intermedi-

ate connections that could be included (e.g., connection (4) could be unpacked to 

explic itly include computation of the expected  free energy). Left: This scheme could 

be expanded hierarchically (collapsing over time steps and policies for simplicity). 

The key idea is that a higher- level network might predict the states and policies at the 

lower level and use  these to draw inferences about the context in which  these occur. 

We  will unpack this idea further in chapter 7.
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articulate a range of inference prob lems, including  those that underwrite 

planning and decision- making. However, when it comes to interacting 

with a real environment, models described in discrete time with categori-

cal variables fall short. This is  because sensory input and motor outputs are 

continuously evolving variables. To account for this, we now turn to a dif-

fer ent sort of generative model. We apply exactly the same idea, a gradient 

descent on variational  free energy, to  these models to find the analogous 

message passing schemes.

4.5.1 A Generative Model for Predictive Coding

To motivate the form of generative model used for continuous states, we 

start with the following pair of equations:

x
. = f (x,v) +ω x

y = g(x,v) +ω y

 (4.15)

The first of  these expresses the evolution of a hidden state over time, 

according to a deterministic function ( f (x, v)) and stochastic fluctuations 

(ω ). The second equation expresses the way in which data are generated 

from the hidden state. In each case, the fluctuations are assumed normally 

distributed, giving the following probability densities for the dynamics and 

likelihood:

p(x
.
|x,v) = N (f (x,v),Πx )

p(y |x,v) = N (g(x,v),Πy )
 

(4.16)

The precision (Π) terms are the inverse covariance of the fluctuations. 

 These two equations form the generative model that underwrite Kalman- 

Bucy filters in engineering. However, schemes of this sort are  limited by the 

assumption of uncorrelated fluctuations over time (i.e., Wiener assump-

tions). This is inappropriate for inference in biological systems, where fluc-

tuations are themselves generated by dynamical systems and have a degree 

of smoothness. We can account for this by considering not only the rate 

of change of the hidden state and the current value of the data but also 

their velocities, accelerations, and subsequent temporal derivatives— that 

is, generalized coordinates of motion (Friston, Stephan et  al. 2010; see 

box 4.2):
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x
. = f (x,v) +ω x

x
.
′ = ′f ( ′x , ′v ) + ′ω x

x
.
′′ = ′′f ( ′′x , ′′v ) + ′′ω x

!

x
.[i ] = f [i ](x[i ], v[i ]) +ω x

[i ]

!

y = g(x,v) +ω y

′y = ′g ( ′x , ′v ) + ′ω y

′′y = ′′g ( ′′x , ′′v ) + ′′ω y

!

y[i ] = g[i ](x[i ], v[i ]) +ω y
[i ]

!
 

(4.17)

 These generalized coordinates can be summarized more succinctly by 

representing a trajectory (again using the ~ symbol) as a vector with ele-

ments corresponding to the successive derivatives above:

D !x = !f ( !x, !v) + !ω x

!y = !g( !x, !v) + !ω y

⎫
⎬
⎪

⎭⎪
⇒

p( !x | !v) = N (D i !f, !Πx )

p( !y | !x, !v) = N ( !g, !Πy )  
(4.18)

Box 4.2
Generalized coordinates of motion

To represent a trajectory in continuous time, generalized coordinates of motion 

provide a  simple pa ram e terization. This is based on a polynomial (Taylor series) 

expansion around the pre sent time to give a function that lets us extrapolate 

to the recent past and near  future. The plots in figure 4.5 show a trajectory 

in some space (x) over time (τ) as a solid line. From left to right, they show 

the trajectory represented in generalized coordinates of motion with one, two, 

and three coordinates (successive temporal derivatives of x). This is the dashed 

line. The expansion  here is around the initial time point. With each successive 

generalized coordinate, we get a more accurate approximation of the trajectory 

into the proximal  future. For most applications, around six generalized coor-

dinates are sufficient.

x

x(τ) ≈ x0 x(τ) ≈ x0 + τx 0́

τ

x

τ

x

τ

x(τ) ≈ x0 + τxʹ0 +   τ2 x0̋
1
2–

Figure 4.5
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In equation 4.18, D is a matrix with ones above the leading diagonal and 

zeros elsewhere. This effectively shifts all ele ments of the vector upward 

and may be thought of as a derivative operator. The generalized precision 

matrices may be constructed on the basis of the smoothness we assume for 

the fluctuations, as detailed in appendix B. Equipped with a prior over the 

hidden cause (v), whose relevance  will become clearer below, this lets us 

write down the  free energy for this generative model:

F[µ,y]= −ln p( !y, !µx, !µv )

= 1
2 !ε i !Π !ε

= 1
2 !ε y i !Πy !ε y + !εx i !Πx !εx + !εv i !Πv !εv( )

!ε =

!ε y
!εx
!εv

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

!y − !g( !µx, !µv )

D !µx − !f ( !µx, !µv )
!µv − !η

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

!Π =

!Πy

!Πx

!Πv

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

(4.19)

In equation 4.19, the μ terms indicate the mode of the approximate pos-

terior density for the x and v terms. The reason the  free energy takes such 

a  simple form in the first line is that we have employed a Laplace approxi-

mation, as detailed in box 4.3. In brief, this treats all probability densities 

as Gaussian, which— through a Taylor series expansion—is equivalent to 

assuming we are operating close to the mode of the distribution. The sec-

ond line of the equation expresses the log probability in terms of squared 

precision weighted prediction errors. This omits all terms that are constant 

with re spect to the posterior mode. The third line unpacks this in terms of 

the log likelihood, log probability of x given v, and log prior of v.

4.5.2 Active Inference as Predictive Coding with Motor Reflexes

 Because the variance of the approximate posterior is an analytic function 

of the mode,  under the Laplace approximation, we can optimize the  free 

energy with re spect to the mode. A  simple way to think about this is that 

we need only find the maximum a posteriori (MAP) estimates5 for each state. 

 These are the means of the posterior distribution that may be equipped with 

its precision without need for further inference via the Laplace approxima-

tion (see box 4.3).
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Box 4.3
The Laplace approximation

Laplace approximations rely on a princi ple similar to the generalized coordi-

nates of motion described in box 4.2. The idea is that the  free energy may be 

approximated by a quadratic expansion around the posterior mode ( μ). In one 

dimension, this is as follows:

F[y,q]= Eq(x)[ lnq(x) − ln p(y,x)]

≈ Eq(x) lnq(µ) + (x − µ)∂x lnq(x)
x= µ

=0
! "## $##

+ 1
2 (x − µ)2 ∂x2 lnq(x)

x= µ

⎡

⎣

⎢
⎢
⎢

− ln p(y,µ) − (x − µ)∂x ln p(y,x)
x= µ − 1

2 (x − µ)2 ∂x2 ln p(y,x)
x= µ

⎤

⎦

⎥
⎥

The assumption that a quadratic expansion is sufficient is equivalent to saying 

that we can treat the probabilities as Gaussian (as the log of a Gaussian density 

is quadratic). Making this explicit, we can simplify the above to the following:

q(x) = N (µ, ∑−1)

F[y,µ]= − ln2π ∑ − ln p(y,µ) − 1
2
tr ∑∂x2 ln p(y,x)

x= µ
⎡
⎣

⎤
⎦

 Under quadratic assumptions, the only term that depends on the mode is 

the second term. Omitting the other terms leads to the expression in equation 

4.19. We can find the precision of the approximate posterior directly, once we 

know the mode, through the following expansion:

lnq(x) ≈ ln p(x | y)

= ln p(x,y) − ln p(y)

≈ ln p(µ,y) + (x − µ) i ∂x ln p(x,y)
x= µ

=0
! "## $##

+ 1
2 (x − µ) i ∂x2 ln p(x,y)

x= µ (x − µ) − ln p(y)

⇒ q(x) ∝ e−
1
2(x− µ) i ∑−1(x− µ), ∑−1 = − ∂x2 ln p(x,y)

x= µ

This tells us that the posterior precision is simply the second derivative of the 

joint probability evaluated at the posterior mode.

!"µ − D !µ = −∇!µF

= ∇!µ ln p( !y, !µ)

= −∇!µ !ε i !Π !ε

!"µx − D !µx

!"µv − D !µv

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

∇!µx !g i !Πy !ε y − D i !Πx !εx + ∇!µx
!f i !Πx !εx

∇!µv !g i !Πy !ε y + ∇!µv
!f i !Πx !εx − !Πv !εv

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

(4.20)

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



82 Chapter 4

In contrast to the gradient descents we saw for the discrete- time scheme, 

the left- hand side of equation 4.20 is the difference between the rate of 

change of μ and the derivative operator applied to this. This is  because 

when the  free energy is minimized, it does not make sense for the rate 

of change of the posterior mode to be zero if the posterior mode associ-

ated with rates of change is nonzero. In other words, “the motion of the 

mode should be the mode of the motion” at the  free energy minimum. This 

ensures µ
. [i ]= µ[i+1] when  free energy is minimized.

We can go one step further than equation 4.20 and treat the hidden 

cause (v) as if it  were data being generated by a higher hierarchical level, 

with slower dynamics (such that v appears not to change at the lower level). 

In  doing so, we can chain together a hierarchy of equations:

!

"#µx
(i) − D "µx

(i)

"#µv(i) − D "µv(i)

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

!

∇
"µx
(i ) "g (i)

i "Π v
(i−1) "εv

(i−1) − D i "Πx
(i) "εx(i) + ∇

"µx
(i )
"f (i)

i "Πx
(i) "εx(i)

∇
"µv
(i ) "g (i)

i "Π v
(i−1) "εv

(i−1) + ∇
"µv
(i )
"f (i)

i "Πx
(i) "εx(i) − "Π v

(i) "εv(i)

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

"εx(i)

"εv(i)
⎡

⎣
⎢

⎤

⎦
⎥ =

D "µx
(i) − f (i)( "µx

(i), "µv(i) )

"µv(i) − g (i+1)( "µx
(i+1), "µv

(i+1))

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

"εv(0) $ "ε y
 

(4.21)

Figure  4.6 graphically emphasizes the role of the hidden states (x) in 

linking together temporal derivatives within one hierarchical level and the 

role of the hidden  causes (v) in linking hierarchical levels together. In this 

predictive coding scheme (Rao and Ballard 1999, Friston and Kiebel 2009), 

higher levels send descending predictions to lower levels, which compute 

errors in  these predictions and pass  these errors back up the hierarchy to 

update beliefs.

To complete our overview of predictive coding in the context of Active 

Inference, we need to incorporate action. Given that our aim is to minimize 

 free energy and that the consequences of action are that we change our 

sensory data, we have the following:

u
. = −∇uF

= −∇u !y(u) i !Πy !ε y  

(4.22)

This equation says that we minimize  free energy through action and that 

the only part of the  free energy that depends directly on action is the lowest 

level of prediction error. In other words, action simply fulfills descending 
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predictions about data through minimizing the error between the predicted 

and observed sensory consequences of action. One way to think about this 

is as if we had equipped a predictive coding scheme with classical reflex arcs 

at the lowest level of the hierarchy (Adams, Shipp, and Friston 2013). In 

this setting, Active Inference is just predictive coding plus reflex arcs. From 

a neurobiological perspective, the idea is that sensory afferents enter the 

brain stem or spinal cord and synapse on motor neurons. Descending pre-

dictions of the sensory input are propagated from the cortex to the motor 

neurons, whose output depends on the difference between their cortical 

and sensory inputs.

Figure 4.6
Message passing of generalized predictive coding schemes. Left: Computation of pre-

diction errors from sensory data, showing how  these may be propagated upward 

through a hierarchy. Higher levels send predictions to the lower levels that may be 

compared with sensory data to compute  these errors. Right: A single layer of the hier-

archy illustrates how neuronal populations representing dif fer ent  orders of general-

ized motion interact with one another.
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From a computational perspective, a reflex arc is one of the simplest pos-

si ble forms of controller;  these correct deviations in predicted and observed 

proprioceptive signals. More complex motor be hav ior requires generating 

sequences of predictions and fulfilling them in order using reflex arcs. This 

mechanism sets active inference apart from other schemes for biological 

motor control, such as optimal control, which are not based on predictive 

coding and use inverse models and controllers that are more complex than 

reflex arcs (Friston 2011). Another peculiar characteristic of Active Inference 

is that it dispenses from notions of value or cost used in optimal control 

(and reinforcement learning);  these are fully absorbed into the (generally 

more expressive) notion of priors (see chapter 10 for further discussion).

4.6 Summary

This chapter outlined the basic formal ideas that underwrite Active Infer-

ence. The key message to take away is that (approximate) Bayesian inference 

may be framed as minimizing a quantity known as variational  free energy. 

This depends on a generative model that expresses our beliefs about how 

data are generated. We have looked at two forms of a generative model that 

may be employed depending on the inference prob lem at hand: specifi-

cally,  whether we are interested in categorical or continuous variables. The 

 free energy minimizing solution to  either can be unpacked in terms of mes-

sage passing between populations of neurons, including the generalized 

predictive coding schemes that follow from continuous models. Fi nally, we 

noted that  free energy can be minimized not just by changing beliefs— such 

that they become consistent with data— but also by acting on the world to 

make data more consistent with beliefs. Over subsequent chapters, we  will 

appeal to the formalisms introduced  here and apply them to more concrete 

settings, providing an opportunity to explore the extensions of the broad 

concepts set out  here.
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Basically  there are two types of animals: animals, and animals that have no 

brains; they are called plants. They  don’t need a ner vous system  because they 

 don’t move actively, they  don’t pull up their roots and run in a forest fire! Any-

thing that moves actively requires a ner vous system; other wise it would come to 

a quick death.

— Rodolfo Llinas

5.1 Introduction

In chapter 4, we saw the form that variational inference takes for two kinds 

of generative model. In this chapter, we focus on the pro cess theories that 

arise from  these inferential dynamics: theories that explain how the brain 

may implement variational inference. Central to this implementation of 

Bayesian belief updating is the notion of Bayesian message passing, which 

encompasses belief propagation and variational message passing, among 

other schemes. The idea subtending  these schemes is that every thing does 

not directly depend on every thing  else. Instead, each variable in a generative 

model depends on relatively few other variables. Similarly, the brain exhibits 

a sparse connectivity structure, wherein the activity of any neuron depends 

only on  those neurons with which it shares synapses. This chapter focuses on 

the way we can map the sparse message passing associated with variational 

inference to the sparse connectivity structure of biological computation.

Let us take a step back from the technical material of chapter 4 and turn 

our attention to the pro cess theories accompanying Active Inference. It is 

impor tant to draw a distinction between a princi ple (i.e., the minimiza-

tion of  free energy) and a pro cess theory about how this princi ple may be 

5 Message Passing and Neurobiology
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implemented in a certain kind of system, such as the brain. The latter lets 

us develop hypotheses that are answerable to empirical data. To address the 

ways in which Active Inference may manifest in the brain, we equate the 

message passing we saw at the end of chapter 4 with synaptic communica-

tion and the dynamics of gradient descent with neuronal activity. The dual 

aim of this chapter is to introduce readers with a technical background to 

the neurobiology of Active Inference and to highlight to biologists the rel-

evance of theory to practical neuroscience. We emphasize that this chapter 

is not intended as the final word on pro cess theories for Active Inference 

(Pezzulo, Rigoli, and Friston 2015, 2018; Friston and Buzsaki 2016; Friston 

and Herreros 2016; Friston, FitzGerald et al. 2017; Friston, Parr et al. 2017; 

Parr and Friston 2018b; Parr, Markovic et al. 2019); it is simply the interpre-

tation that seems most consistent with currently available evidence. Nor is 

our aim to endorse a specific pro cess theory but to illustrate how the ideas 

formulated in chapters 1–4 may be put to work in formulating hypotheses 

answerable to neurobiological mea sure ments.

This chapter is or ga nized as follows. First, in section 5.2, we consider the 

role of a cortical microcircuit. This is a functional unit comprising several 

neural populations connected to one another. The pattern of connectivity is 

replicated over many cortical regions. We highlight the relationship between 

this ste reo typed cir cuit and the message passing architectures of figures 4.4 

and 4.6— themselves recapitulated over hierarchical levels. In section  5.3 

we move to effector systems and the formulation of motor control  under 

Active Inference. This deals with the way in which the motor cortex tunes 

spinal and brain stem reflex arcs to generate purposeful be hav ior. Section 5.4 

touches on ideas relating to subcortical structures like the thalamus and basal 

ganglia— which have impor tant roles in planning and decision- making. We 

then consider, in section 5.5, modulation of synaptic efficacy, including the 

role of neurotransmitters in precision optimization and of plastic changes in 

learning. Fi nally, in section 5.6 we return to the theme of hierarchy and the 

relationship between decision- making and movement generation.

5.2 Microcircuits and Messages

In chapter 4, we saw that the belief- update equations mediating variational 

inference may be interpreted in terms of a (neuronal) network. The inference 

schemes presented— for continuous and categorical models— each give rise 
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to a ste reo typed circuitry whose structure is repeated in hierarchical genera-

tive models. Similarly, the architecture of the ce re bral cortex has a ste reo typed 

structure (Shipp 2007). The neocortex is divided into six layers (or laminae), 

numbered from superficial (close the brain’s surface) to deep (closer to the 

subcortical white  matter). Each layer is characterized by the presence of spe-

cific cell types and patterns of connectivity (Zeki and Shipp 1988, Felleman 

and Van Essen 1991, Callaway and Wiser 2009); this connectivity is summa-

rized in the schematic of a single cortical column in figure 5.1.

A cortical column in one region of the brain connects to columns in other 

regions and to subcortical structures. Cortical regions are often depicted in 

a hierarchy that (loosely speaking) assigns  those regions closest to sensory 

input or motor output to the lowest rungs of the hierarchy. As we move 

further away from  these regions— for example, from primary to secondary 

visual cortex—we ascend the hierarchy. This notion of hierarchy is licensed 

by the laminar- specific connectivity structure illustrated in figure  5.1. 

Ascending projections (i.e., connections) from lower cortical areas or sensory 

(primary) thalamic nuclei tend to target the spiny stellate cells in layer IV. 

Lower cortical areas give rise to ascending connections from their superficial 

pyramidal cells (layers II and III). Descending projections from higher corti-

cal areas target both superficial and deep layers of lower areas, with origins in 

the deep (layer VI) pyramidal cells. In addition, deep pyramidal cells (of Betz) 

in layer V proj ect to vari ous other targets, including subcortical nuclei— like 

the basal ganglia and secondary thalamic nuclei— and spinal motor neurons.

The  middle schematic in figure 5.1 shows one pos si ble mapping from 

the network for predictive coding (figure 4.4) to the laminar anatomy of the 

cortex (Friston, Parr, and de Vries 2017). This is a  little complicated to inter-

pret, but the key points are as follows. The ascending input to layer IV 

spiny stellate cells is associated with the prediction error for hidden  causes 

( !εv(i)). The ascending output from layer III superficial pyramidal cells repre-

sents the same prediction error for the next layer of the hierarchy ( !εv
(i+1)). 

Descending input represents the prediction ( !g (i+1)) from the higher level, 

while descending output is the prediction for the lower level ( !g (i)). At the 

lowest level, we see descending predictions coming from layer V, consistent 

with the output to spinal motor neurons shown on the left. We  will return 

to this in section 5.3. Recall from chapter 4 that the role of hidden  causes 

is to link together hierarchical levels of a model that operates over multiple 

dif fer ent timescales. This contrasts with the hidden states, whose role is 
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in the dynamics at a specific timescale— consistent with their role in the 

intrinsic (within- column) connectivity in figure 5.1.

Asymmetry in message passing is impor tant, as it offers empirical pre-

dictions about the difference between ascending and descending activity. 

One of  these predictions is that we might expect  these messages to be com-

municated by neural activity at dif fer ent temporal frequencies. The rea-

son for this is that the operations required to compute a prediction error 

from an expectation are nonlinear (Friston 2019b). This nonlinearity is 

due to the computation of predictions using nonlinear functions ( g) that 

tend to increase the frequency of a signal (e.g., a doubling of frequency 

on squaring a sine wave). A prediction arising from this is that ascending 
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Figure 5.1
Canonical cortical microcircuits illustrating the relationship between inferential mes-

sage passing and the architecture of the ce re bral cortex. Left: Simplified schematic 

based on a synthesis of Miller 2003; Haeusler and Maass 2007; Shipp 2007, 2016; and 

Bastos et al. 2012 (refer to  these papers for a summary of the neuroanatomical obser-

vations from which this synthesis is derived). Round arrowheads indicate inhibition; 

normal arrowheads indicate excitatory connections. The neural populations divide 

coarsely into superficial pyramidal (SP), deep pyramidal (DP), spiny stellate (SS), and 

inhibitory interneurons (II).  Middle: Message passing that underwrites hierarchical 

predictive coding. Right: Message passing needed to solve a partially observable Mar-

kov decision pro cess (POMDP).
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messages— originating from error units— may be mea sur able in higher fre-

quency bands than descending messages— originating from expectation 

units (see figure 5.2). This is consistent with mea sured spectral asymme-

tries, wherein ascending connections are typically associated with gamma 

frequencies and descending connections with alpha or beta bands (Arnal 

and Giraud 2012; Bastos, Litvak et al. 2015).

The schematic on the right in figure 5.1 shows an interpretation of the 

message passing for a POMDP model as a cortical microcircuit. This has a 

structure similar to the predictive coding architecture, with expectations (s) 

represented in superficial and deep pyramidal cells and propagated up and 

down cortical hierarchies. In addition, error units (ε) in layer IV are in receipt 

of ascending signals. In contrast to predictive coding– style architectures, the 

messages passed between regions are mixtures of expectations as opposed to 

errors (Friston, Rosch et al. 2017; Parr, Markovic et al. 2019). However, the 
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Figure 5.2
Simplified version of the predictive coding scheme shown in the  middle of figure 5.1, 

unpacked to show the message passing between three cortical regions. Emphasis is 

on the asymmetry in message passing, with dotted lines showing ascending mes-

sages (prediction errors) and solid lines showing descending messages (predictions). 

Figure 5.1 is a finer- grained version of this schematic, including the intermediate 

neurons in the polysynaptic connections shown  here. In this figure, coarse- graining 

the laminar specificity and dividing the cortex into Superficial and Deep relative to 

layer IV recovers a predictive coding scheme that  will be familiar to many readers.
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overall structure of minimizing an error (i.e.,  free energy gradient) by updat-

ing expectations is preserved. This message passing distinguishes between 

expectations conditioned on a policy (subscript π) and  those averaged  under 

policies. To translate from the former to the latter, we also need posterior 

beliefs about policies (π). We  will return to this in section 5.4, but for now 

it is worth highlighting the consistency of this message passing with the 

targeting of superficial cortical layers by subcortical structures that could 

compute  these beliefs.

In figure  5.1, note the absence of a one- to- one mapping between the 

architecture on the left and the message passing schemes in the  middle and 

right. For example,  there appears to be a discrepancy between the  middle 

and left: the descending input in the column on the left arrives at layers II 

and IV, but that in the  middle graphic targets layer III. This highlights that 

the connections implied by message passing schemes may not manifest as 

single synapses. The descending inhibitory connection targeting layer III 

could be mediated by the combination of an excitatory projection to layer 

IV inhibitory interneurons, and the projection of  these interneurons to layer 

III. This disynaptic pathway resolves the apparent discrepancy between the 

two architectures.

In sections 5.3 and 5.4, we deal with the layer V neurons’ role in move-

ment and planning, corresponding to their spinal (or brain stem) and subcor-

tical projections, respectively. In sections 5.5 and 5.6, we deal with the ways 

neural message passing is modulated over time and then return to the rela-

tionship between the microcircuits for categorical and continuous inference.

5.3 Motor Commands

The schematic on the left in figure 5.1 shows that layer V of the cortex 

proj ects to spinal pyramidal neurons and that this can be interpreted as a 

prediction (Adams, Shipp, and Friston 2013). This is unpacked in figure 5.3, 

which shows the spinal components of this cir cuit; we see a prediction 

based on the expectations encoded by Betz cells in layer V of the primary 

motor cortex. This is subtracted from the incoming proprioceptive input to 

the dorsal horn of the spinal cord, resulting in a proprioceptive prediction 

error. This error drives muscle activity that results in its own suppression—as 

proprioceptive data change to comply with predictions. The idea of a motor 

command as a prediction is central to Active Inference, as it highlights the 
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duality of action and perception. The action part is the minimization of any 

discrepancy between predictions and sensory data by changing the data. 

This says that the only  thing we should need to generate a movement is a 

prediction of the sensory consequences anticipated if that movement  were 

to be executed. The fact that proprioceptive prediction errors can always be 

resolved by reflexes (as opposed to belief updating) offers a pos si ble expla-

nation for the paucity of granular cells in layer IV of the primary motor 

cortex (Shipp, Adams, and Friston 2013).
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Figure 5.3
Neuroanatomy associated with Active Inference in modulating spinal motor reflexes. 

Starting from the Betz cells (upper motor neurons) in layer V of the motor cortex, 

the pyramidal tract carries predictions of proprioceptive input  under the move-

ment entailed by motor cortical expectations. The tract decussates (crosses over) and 

synapses— sometimes polysynaptically—on lower motor neurons in the ventral horn 

of the spinal cord. Subtracting the predictions from proprioceptive afferent signals 

arriving at the dorsal horn of the spinal cord results in an error that says how much 

muscle contraction would be required to meet the prediction. Lower motor neurons 

then cause this muscle contraction (or relaxation), ensuring that the resulting pro-

prioceptive data match descending predictions.
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An impor tant aspect of this sort of motor control is the notion of sensory 

attenuation (Brown et al. 2013). Consider the prob lem of initiating a new 

movement. To do this, we need to be able to predict that we are moving. 

However,  until we are moving, the proprioceptive data to hand contradicts 

this hypothesis and could prompt its revision. Therefore, we need a way 

to preclude sensory data from updating our expectations, so that we can 

entertain the (initially false) belief that we are moving so that this belief 

can be realized through action (cf. ideomotor phenomena). The implica-

tion is that we need to be able to attend away from proprioceptive data by 

turning down their gain. Technically, this gain is given by the precision 

(inverse variance) with which  these data are predicted. To attenuate this, we 

need descending motor tracts to predict not just the data but the precision 

of—or confidence placed in— those data, decreasing this precision to initi-

ate movement. This is known as sensory attenuation and can be thought 

of as the complement to sensory attention, equipping us with the capacity 

to ignore certain prediction errors, such as  those generated by saccadic eye 

movements ( here sensory attenuation is known as saccadic suppression). 

Failures to attenuate are thought to be central to a range of neurological 

and psychiatric syndromes, including passivity phenomena (Pareés et al. 

2014) and—at its most extreme— catatonic states in schizo phre nia and the 

failure to initiate movements in Parkinson’s disease.

5.4 Subcortical Structures

In addition to its projections to the spinal cord, cortical layer V targets sev-

eral other structures. Among  these is the striatum (Shipp 2007, Wall et al. 

2013)— a structure deep within the cerebrum comprising the caudate nucleus 

and putamen. The striatum is the input nucleus of a complex network of 

structures known as the basal ganglia. Medium spiny neurons are the func-

tional units of the striatum, taking input from the cortex and projecting to 

other nuclei of the basal ganglia.  These divide into two types— those that 

express D1 dopamine receptors and  those that express D2 receptors— where 

dopamine enhances activity of the former and attenuates it for the latter. 

The former cells are the origin of the direct pathway through the basal 

ganglia, connected by a single inhibitory synapse to the output nuclei (the 

internal globus pallidus and substantia nigra pars reticulata). The D2 cells 

give rise to the indirect pathway, a slightly more complex course with two 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



Message Passing and Neurobiology 93

inhibitory and one excitatory synapse. The striatum inhibits the external 

globus pallidus, which itself inhibits the subthalamic nucleus (STN). The 

STN proj ects to the basal ganglia outputs, meaning that the output nuclei 

are inhibited by the direct pathway and disinhibited by the indirect path-

way. As  these nuclei are themselves inhibitory, the net result of activating 

D1- expressing striatal neurons is disinhibition of be hav ior, which would be 

suppressed by D2- expressing neurons (Freeze et al. 2013).

Given that we have associated proprioceptive predictions with the pro-

jections to the spinal cord, which messages should we associate with the 

layer V projections to the striatum? Inspection of figure 5.1 offers a pos si-

ble solution. Predicted outcomes (o) and the differences between preferred 

and predicted outcomes (ς ) are shown in this layer, combining to compute 

the expected  free energy (G) of a policy. Computing the last of  these in the 

striatum is consistent with the notion that the basal ganglia are involved in 

planning— that is, evaluating alternative courses of action. Figure 5.4 shows 

one pos si ble mapping of the message passing for policy evaluation onto the 

anatomy of the basal ganglia.

The key  thing to draw from figure 5.4 is that, as described in chapter 4, 

posterior probabilities over policies (π)— shown  here in the internal glo-

bus pallidus— are computed on the basis of their expected  free energy. This 

pattern follows the direct pathway from layer V of the cortex through the 

striatum to the basal ganglia output nuclei. However,  there are a few addi-

tional subtleties. In the hierarchical scheme shown on the left in figure 4.4, 

we see that expectations about states at higher levels can influence beliefs 

about policies at lower levels. Figure 5.4 shows this on the left, where the 

expected observations  under high- level states are used to form empirical 

priors (E) that influence policy se lection in de pen dently of the expected  free 

energy. We  will return to this in chapter 7, but the main idea is that we have 

beliefs about how we act in par tic u lar contexts.  These prior expectations 

tend to bias policy evaluation when we find ourselves in the same context 

again— much like habit formation. In this sense, the influences of E and G 

can be seen as habitual and goal- directed drives, respectively. In reinforce-

ment learning (Lee et al. 2014),  these are sometimes referred to as “model- 

free” and “model- based” systems.1 Associating  these with the direct and 

indirect pathways of the basal ganglia has an in ter est ing consequence: it 

implies that dopamine modulates the balance of the two. Remember that 

dopamine tends to promote the direct pathway and execution of specific 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



94 Chapter 5

policies (Moss and Bolam 2008)— presumably  those associated with the 

lowest expected  free energy. In contrast, low dopamine might be expected 

to  favor context- sensitive priors in the indirect pathway, whose role is to 

suppress implausible policies in a given context. In a sense, striatal dopa-

mine can be thought of as modulating the balance between inferring what 

to do and what not to do (Parr 2020).

The above is consistent with perturbations of the dopaminergic system; 

its depletion in severe Parkinson’s disease  causes akinesia— a failure to enact 

specific policies— while exogenous dopamine agonists promote impulsive 

be hav iors (Frank 2005; Galea et al. 2012; Friston, Schwartenbeck et al. 2014). 

In addition, it is consistent with conceptual models of basal ganglia func-

tion. For example, Nambu (2004) suggests that the direct pathway mediates 

a fast and focused inhibition of the internal globus pallidus, followed by a 

broad and slow excitation, which  causes excitation and inhibition of the 

targets of the basal ganglia, respectively. This is thought to ensure a “centre- 

surround” pattern that facilitates motor programs with a high specificity, 

which is consistent with the fast pro cesses computing the expected  free 

energy facilitating action and the broader contextualization of the slower 

pathway communicating empirical priors.

The final observation to make about figure 5.4 is that  there are two levels 

of a cortical hierarchy (superscripted) contributing to the same basal gan-

glia cir cuit. This suggests temporally slower regions in targeting of indirect 

pathway neurons, but both fast and slow influences over the direct path-

way. As we ascend cortical hierarchies, neurons tend to represent slower 

dynamics. For example, we may expect frontal cortical regions to represent 

longer timescales than parietal regions. This is consistent with the anatomi-

cal distribution of cortical inputs to the basal ganglia pathways (Wall et al. 

2013). This temporal coarse graining in the indirect pathway is comple-

mented by spatial coarseness, with the direct pathway medium spiny neu-

rons exhibiting larger dendritic arbors (Gertler et al. 2008), enabling finer 

tuning. Therefore, the anatomy of figure 5.4 is endorsed by evidence from 

both clinical pathology (e.g., Parkinsonism) and cellular morphology.

In addition to the basal ganglia, many other impor tant subcortical 

structures contribute to neuronal message passing. In the next section, we 

 will discuss  those from which neuromodulatory systems originate; we  will 

conclude this section by briefly touching on the thalamus. We  will not 

be able to do this highly complex structure full justice; however, we can 
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outline some basic princi ples. The thalamus is often divided into primary 

and secondary nuclei. Figure 5.1 shows that primary thalamic nuclei can 

play the same role as lower cortical regions, in the sense that they target 

layer IV of the cortex and receive input from layer VI deep pyramidal cells 

(Thomson 2010, Olsen et al. 2012). An example is the lateral geniculate 

nucleus in the visual system, often thought of as a relay between the eye 

and the visual cortex. Like  those neurons representing prediction errors, 

this receives both sensory information from the eye and backward projec-

tions from the cortex, which could be construed as predictions. Second 

order thalamic nuclei include the mediodorsal nucleus and the pulvinar, 

which interact with frontal and posterior cortices, respectively.  These may 

have a role in predicting second order statistics (i.e., precision and vari-

ance) of sensory or higher order inputs and have been associated with 

figure- ground discrimination tasks (Kanai et al. 2015). Simplistically, this 

suggests that the division of the thalamus into primary and secondary 

nuclei may be a manifestation of the division into first and second order 

statistics.

5.5 Neuromodulation and Learning

Structural neuroanatomy is impor tant, but it only gives us part of the pic-

ture of neural pro cessing  because the presence of a connection does not tell 

us much about the way it is used. As an example, consider the role of the 

substantia nigra shown in figure 5.4. The modulatory effect this has on stria-

tal connectivity underwrites very dif fer ent outputs from the basal ganglia, 

depending on the amount of dopamine released. Fast modulation of synap-

tic efficacy of this form can be contrasted with the slower but more per sis tent 

changes that occur with learning. In this section, we focus on  these two ways 

in which synaptic efficacy can change.

Precision is an impor tant concept in understanding neuromodulation 

(Feldman and Friston 2010). We touched on this in chapter 4 and in our 

discussion of sensory attenuation above, where we saw that it acts as a 

multiplicative weight on the prediction errors. More broadly, precision 

is a mea sure of confidence in a probability distribution. The relationship 

between the two is  simple. If we have very precise beliefs about how data 

are generated from hidden states, then our beliefs about hidden states can 

be updated by observing data more than if we are not confident in  those 
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beliefs. When belief updates manifest as changes in neuronal firing, a more 

precise likelihood distribution manifests as an increased neural response 

to a given sensory stimulus. This is essential for cognitive functions from 

attention (Parr and Friston 2019a) to multisensory integration (Limanowski 

and Friston 2019).

This perspective on synaptic gain control tells us something  simple but 

impor tant. If precision is an attribute of some distribution in a generative 

model, then  there should be dif fer ent precisions associated with dif fer ent 

distributions. This is intuitively sensible, as we can be more or less confi-

dent in the reliability of our sensations, in how  things  will dynamically 

evolve, and even in how we might act (Parr and Friston 2017b). We have 

seen the last of  these in the context of dopaminergic signaling in the basal 

ganglia. The greater the associated precision, the more confident we are 

that our policies  will minimize expected  free energy.

Direct pathwayIndirect pathway

Striatum

Globus pallidus

STN

SNpc

Cerebral cortexo

(i+1) o


(i) ς

(i)

E(i) G(i)
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Figure 5.4
Direct and indirect pathways of the message passing for policy se lection associated 

with Active Inference through the basal ganglia using a POMDP generative model. 

Pathways from the ce re bral cortex culminate in estimation of policies. The direct 

pathway (right ) goes from cortex to striatum to internal globus pallidus. The indi-

rect pathway (left ) goes from cortex to striatum to external globus pallidus to subtha-

lamic nucleus (STN) to internal globus pallidus. Both pathways exist bilaterally; in 

addition, the substantia nigra pars compacta (SNpc) is shown modulating the bal-

ance between the two. (Note: This is a simplification of basal ganglia connectivity.)

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



Message Passing and Neurobiology 97

If one of the roles of the dopaminergic system— originating in the substan-

tia nigra pars compacta and the ventral tegmental area of the midbrain—is 

to signal confidence in what to do, then do other neuromodulatory systems 

play similar roles?  Table 5.1 summarizes the evidence associating precisions 

with neuromodulatory systems— with the symbols sometimes used for  these 

precisions. Specifically, the cholinergic system arising from the basal nucleus 

of Meynert appears to signal the precision of some likelihood distributions. 

The noradrenergic system, from the locus coeruleus, seems to play a role 

in signaling the precision of transitions over time. The serotonergic system 

seems less clear but may relate to the precision of prior preferences.

Why is it useful to be able to associate  these precisions with neuromodu-

latory systems? The answer is threefold: it lets us explain observed biology, 

form hypotheses, and develop noninvasive methods to mea sure precision. 

We  will highlight one example of each of  these. First, regarding explana-

tions of observed biology, empirical mea sure ments of dopamine signals 

famously look like “reward prediction errors” (Schultz 1997)— with animals’ 

dopamine increasing on receiving unexpected fruit juice or seeing a cue 

signaling imminent fruit juice. Active Inference offers an alternative expla-

nation of  these findings (Schwartenbeck, FitzGerald, Mathys, Dolan, and 

Friston 2015). Achieving a reward (or fulfilling our preferences) or encoun-

tering a cue indicative of a  future reward enhances our confidence that we 

are pursuing a policy that minimizes expected  free energy. This increase in 

confidence manifests as a spike in dopamine.

Second, regarding formation of hypotheses, an example concerns the 

decrease in cholinergic signaling associated with Lewy body dementia (Parr, 

Benrimoh et al. 2018)— a condition that leads to complex visual hallucina-

tions. One plausible explanation for this is that accumulation of pathol-

ogy in higher visual cortices prompts a mismatch between the predictions 

from  these areas and the activity in primary visual cortices. Such a mis-

match downgrades confidence in the associated likelihood distributions 

and  causes loss of cholinergic signaling. The consequence of this loss of 

precision is a failure to update beliefs on the basis of sensory data, meaning 

perception loses the constraints afforded by sensation. This could explain 

the development of hallucinatory percepts in this condition.

Third, regarding noninvasive mea sure ment of precision par ameters, 

an example is the identification of computational phenotypes.  There are 

a number of peripheral manifestations of central neurochemical activity, 
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 Table 5.1
Putative roles of neurotransmitters in Active Inference

Neurotransmitter Precision Evidence

Acetylcholine Likelihood (ζ  ) •   Presence of presynaptic receptors on  
thalamocortical afferents (Sahin et al. 1992,  
Lavine et al. 1997)

•   Modulation of gain of visually evoked 
responses (Gil et al. 1997, Disney et al. 
2007)

•   Changes in effective connectivity with 
pharmacological manipulations  
(Moran et al. 2013)

•   Modeling of behavioral responses  under 
pharmacological manipulation (Vossel 
et al. 2014, Marshall et al. 2016)

Noradrenaline Transitions (ω ) •   Maintenance of per sis tent prefrontal 
(delay- period) activity (requiring precise 
transition probabilities) depends on  
noradrenaline (Arnsten and Li 2005, 
Zhang et al. 2013)

•   Pupillary responses to surprising (i.e., 
imprecise) sequences (Nassar et al. 2012, 
Lavín et al. 2013, Liao et al. 2016, Krishna-
murthy et al. 2017, Vincent et al. 2019)

•   Modeling of behavioral responses  under 
pharmacological manipulation (Marshall 
et al. 2016)

Dopamine Policies (γ ) •   Expressed postsynaptically on striatal 
medium spiny neurons (Freund et al. 1984, 
Yager et al. 2015)

•   Computational fMRI reveals midbrain 
activity with changes in precision 
(Schwartenbeck, FitzGerald, Mathys, 
Dolan, and Friston 2015)

•   Modeling of behavioral responses  under 
pharmacological manipulation (Marshall 
et al. 2016)

Serotonin Preferences or 
interoceptive 
likelihood (χ )

•   Receptors expressed on layer V pyramidal 
cells (Aghajanian and Marek 1999, Lambe 
et al. 2000, Elliott et al. 2018) in medial 
prefrontal cortex

•   Medial prefrontal cortical regions heavi ly 
implicated in interoceptive pro cessing and 
autonomic regulation (Marek et al. 2013, 
Mukherjee et al. 2016)

Source: Parr and Friston 2018.
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including the relationship between spontaneous blink rate and dopamine 

(Karson 1983) and between pupillary size and noradrenaline (Koss 1986). 

Recent work exploring the latter (Vincent et al. 2019) has demonstrated a 

relationship between the transition precision expected to be inferred by an 

ideal Bayesian observer and the dynamics of pupillary constriction and dila -

tation. The implication is that we could probe someone’s implicit genera-

tive model (i.e., empirical prior beliefs) through peripheral mea sure ments 

of this sort.

While fast changes in precision are impor tant, this is a crude way of 

optimizing effective connectivity; it leads to an increase or decrease in the 

gain of a signal, but nothing more subtle. If we want to change the way 

the signal is interpreted, we need to rely on learning. We  will return to this 

in detail in chapter 7. However, the basic idea is that we hold beliefs not 

just about states of the world but also about the fixed (or slowly varying) 

par ameters that determine the dependencies between variables (Friston, 

FitzGerald et al. 2016). The substrate of  these beliefs is the efficacy of synap-

tic connections between the neural populations representing time- varying 

variables (like hidden states or outcomes). When we observe an outcome 

that we believe was generated by a given state, we can update beliefs about 

the pa ram e ter connecting the two, reflecting an increase in the probability 

of them co- occurring in the  future. In other words, we get a strengthen-

ing of the synapses between the two populations of neurons. The result is 

Hebb’s famous edict (paraphrased): “Cells that fire together, wire together.”

An impor tant feature of figure 5.1 is that, in both predictive coding and 

marginal message passing schemes, the connections entering and leaving 

a cortical column relate to likelihood distributions. In contrast, transition 

probabilities and continuous dynamics depend on connections within a 

microcircuit. This suggests that learning dynamics should lead to changes 

in intrinsic connectivity, while learning observation models should modify 

extrinsic connectivity. Using techniques like dynamic causal modeling— 

which allow for evaluation of effective connectivity mea sures from neuro-

imaging data—it is pos si ble to put  these hypotheses to the test (Tsvetanov 

et al. 2016, Zhou et al. 2018). This highlights the role of pro cess theories of 

this sort: they let us go beyond abstract theorizing to form specific testable 

hypotheses.

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



100 Chapter 5

5.6 Continuous and Discrete Hierarchies

Fi nally, it is worth highlighting the move from continuous repre sen ta tions 

at low levels of a neural hierarchy to categorical variables at higher levels. 

The point is that the discrete and continuous message passing schemes we 

have considered likely coexist in the brain  because we are able to hold beliefs 

of a categorical sort (e.g., in identifying what an object is or who a person 

is) in addition to being able to interface with continuously varying sensory 

receptors and effectors (e.g., muscle length or visual luminance contrast). 

This is reflected in neurophysiology, where some neurons are selective to 

specific stimuli and  others vary in proportion to the intensity of a stimulus.

An in ter est ing observation is that our interface with the world around 

us is in the continuous domain, the implication of which is that the lowest 

level of any hierarchy in the brain must be continuous. Having said this, we 

saw in figure 5.4 that policy se lection in the basal ganglia may be framed 

as a discrete pro cess, selecting between alternative movements. This tells us 

that we can think of movements as a composition of discrete trajectories 

into purposeful action. Where the lowest level might deal with the requisite 

changes in muscle length, descending input is based on decisions about 

which movement to make. From the perspective of a generative model, 

this means associating alternative (discrete) hypotheses about the world 

with the (continuous) dynamics entailed by  those hypotheses. In chapter 8, 

we  will return to the question of how to put  these together from a compu-

tational perspective.  Here, we simply note that the further we move from 

sensory receptors, the more we tend to find discretized repre sen ta tions in 

neural systems. Indeed, the very existence of classical receptive fields in 

neurophysiology could be interpreted as a probabilistic repre sen ta tion that 

the world is in some par tic u lar regime of a perceptual state- space— a state- 

space that is tiled by receptive fields and consequently partitioned into lots 

of  little categories. Figure 5.5 brings together  these schemes and acts as a 

summary of the ideas set out in this chapter.

5.7 Summary

This chapter has sought to outline the points of connection between the 

message passing schemes implied by the generative models of chapter 4 and 

the neurobiology of inference, action, and planning. What do we gain by 
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Figure 5.5
Anatomy of inference (based on Friston, Parr, and de Vries 2017) connects schematics 

from figures 5.1–5.4, providing a summary of the ideas in this chapter. Two hierar-

chical loops through the cortex and basal ganglia highlight the distinction between 

habits— based on input from higher levels— and the more context- sensitive, goal- 

directed (explorative and exploitative) be hav ior resulting from expected  free energy 

minimization. Note the influence of inferences about policies on s, implementing 

the Bayesian model averaging  under policies referred to in the main text. This projec-

tion from basal ganglia to cortex may be mediated by intermediate structures, such as 

the thalamus. On the right, the categorical POMDP- based messages are relayed into 

a continuous predictive- coding network, involved in generation of action. Each cat-

egorical state is associated with an alternative prediction of continuous variables and 

contributes to a prediction error. The message in the opposite direction computes the 

posterior probability of the associated categorical outcome (o), which depends on pri-

ors based on the policy- dependent outcome (oπ ), beliefs about the policy (π ), and the 

likelihood of the continuous trajectory that may be computed from posterior expecta-

tions (  μ ) and variances (not shown) at the continuous level. More connections could 

be included  here; for instance, in addition to habits (E), the se lection of goals (C from 

chapter 4) is itself likely to depend on higher hierarchical levels, leading to hierarchical 

control of motivation (see Pezzulo, Rigoli, and Friston 2018 for details).
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relating message passing to neuronal communication? It allows us to make 

empirical predictions based on the generative model that we hypothesize 

the brain is inverting. This may take the form of an evoked response— the 

change in potential that is mea sur able at the scalp on presenting the brain 

with a sensory stimulus— whose time course  will depend on the amount 

of belief updating induced by that stimulus. Alternatively, computational 

neuroimaging methods can be used to associate simulated inferences with 

 those brain regions exhibiting similar temporal dynamics (Schwartenbeck, 

FitzGerald, Mathys, Dolan, and Friston 2015). Making this association is 

impor tant in understanding pathology— and therapeutics— for computa-

tional (i.e., neurological and psychiatric) disorders, allowing for expression 

of functional pathologies in terms of their biology.

Fi nally, it is worth acknowledging that much of the brain has been 

conspicuously absent in this chapter— partly for reasons of space but also 

 because neuroscience is a work in pro gress.  There are many opportunities to 

extend (or even replace) the account given in this chapter. To some degree 

we can extrapolate from what we have seen  here. For example, parts of the 

amygdala are cytoarchitecturally equivalent to basal ganglia nuclei. Does 

this mean  there is a class of policies evaluated by the amygdala? Could 

this structure be to autonomic policies what the basal ganglia are to  those 

in the skeletomotor domain? Might other structures (like the pulvinar) 

play similar roles for other (e.g.,  mental) classes of policy? How should we 

understand cortical architectures that differ from the six- layered structure 

in figure 5.1? The cerebellum and the hippocampal formation each exhibit 

distinct but ste reo typed microcircuitry (Wesson and Wilson 2011). Should 

we see  these as anatomical rearrangements of the same Bayesian message 

passing schemes, or do they deal with dif fer ent aspects of a generative model 

(Pezzulo, Kemere, and van der Meer 2017; Stoianov et al. 2020)? We raise 

 these questions not to offer any answers but to highlight some of the excit-

ing ave nues of  future research in theoretical neurobiology. Active Inference 

and its associated pro cess theories offer a rigorous formal and conceptual 

framework in which to address  these questions.
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Give me six hours to chop down a tree and I  will spend the first four sharpening 

the axe.

— Abraham Lincoln

6.1 Introduction

This chapter provides a four- step  recipe to construct an Active Inference 

model, discussing the most impor tant design choices one has to make to 

realize a model and providing some guidelines for  those choices. It serves as 

an introduction to the second part of the book, which  will illustrate several 

specific computational models using Active Inference and their applica-

tions in a variety of cognitive domains.

As Active Inference is a normative approach, it tries to explain as much as 

pos si ble about be hav ior, cognitive, and neural pro cesses from first princi ples. 

Consistently, the design philosophy of Active Inference is top- down. Unlike 

many other approaches to computational neuroscience, the challenge is 

not to emulate a brain, piece by piece, but to find the generative model that 

describes the prob lem the brain is trying to solve. Once the prob lem is appro-

priately formalized in terms of a generative model, the solution to the prob-

lem emerges  under Active Inference— with accompanying predictions about 

brains and minds. In other words, the generative model provides a complete 

description of a system of interest. The resulting be hav ior, inference, and 

neural dynamics can all be derived from a model by minimizing  free energy.

The generative modeling approach is used in several disciplines for the real-

ization of cognitive models, statistical modeling, experimental data analy sis, 

6 A  Recipe for Designing Active Inference Models
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and machine learning (Hinton 2007b; Lee and Wagenmakers 2014; Pezzulo, 

Rigoli, and Friston 2015; Allen et al. 2019; Foster 2019).  Here, we are pri-

marily interested in designing generative models that engender cognitive 

pro cesses of interest. We have seen this design methodology in previous 

chapters. For example, using a generative model for predictive coding, per-

ception was cast as an inference about the most likely cause of sensations; 

using a generative model that evolves in discrete time, planning was cast 

as an inference about the most likely course of action. Depending on the 

prob lem of interest (e.g., planning during spatial navigation or planning 

saccades during visual search), one can adapt the form of  these generative 

models to equip them with dif fer ent structures (e.g., shallow or hierarchi-

cal) and variables (e.g., beliefs about allocentric or egocentric spatial loca-

tions). Importantly, Active Inference may take on many dif fer ent guises 

 under dif fer ent assumptions about the form of the generative model being 

optimized. For example, assumptions about models that evolve in discrete 

or continuous time influence the form of the message passing (see chap-

ter 4). This implies that the choice of a generative model corresponds to 

specific predictions about both be hav ior and neurobiology.

This flexibility is useful as it allows us to use the same language to describe 

pro cesses in multiple domains. However, it can also be confusing from a 

practical perspective, as  there are a number of choices that must be made 

to find the appropriate level of description for the system of interest. In 

the second part of this book, we  will try to resolve this confusion through 

a series of illustrative examples of Active Inference in silico. This chapter 

introduces a general  recipe for the design of Active Inference models, high-

lighting some of the key design choices, distinctions, and dichotomies that 

 will appear in the numerical analy sis of computational models described in 

subsequent chapters.

6.2 Designing an Active Inference Model: A  Recipe in Four Steps

Designing an Active Inference model requires four foundational steps, each 

resolving a specific design question:

1. Which system are we modeling? The first choice to make is always the 

system of interest. This may not be as  simple as it seems; it rests on 

the identification of the bound aries (i.e., Markov blanket) of that sys-

tem. What counts as an Active Inference agent (generative model), what 
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counts as the external environment (generative pro cess), and what is the 

interface (sensory data and actions) between them?

2. What is the most appropriate form for the generative model? The first 

of the next three practical challenges is deciding  whether it is appropri-

ate to think of a pro cess more in terms of categorical (discrete) inferences 

or continuous inferences, motivating the choice between discrete or 

continuous- time implementations (or a hybrid) of Active Inference. Then 

we need to select the most appropriate hierarchical depth, motivating 

the choice between shallow versus deep models. Fi nally, we need to con-

sider  whether it is necessary to endow generative models with temporal 

depth and the ability to predict action- contingent observations to support 

planning.

3. How to set up the generative model? What are the generative model’s 

most appropriate variables and priors? Which parts are fixed and what 

must be learned? We emphasize the importance of choosing the right 

sort of variables and prior beliefs; furthermore, we emphasize a sepa-

ration in timescales between the (faster) update of state variables that 

occurs during inference and the (slower) update of model par ameters 

that occurs during learning.

4. How to set up the generative pro cess? What are the ele ments of the 

generative pro cess (and how do they differ from the generative model)?

 These four steps (in most cases) suffice to design an Active Inference 

model. Once completed, the be hav ior of the system is determined by the 

standard schemes of Active Inference: the descent of the active and internal 

states on the  free energy functional associated with the model. From a more 

practical perspective, once one has specified the generative model and gen-

erative pro cess, one can use standard Active Inference software routines to 

obtain numerical results, as well as to perform data visualization, analy sis, 

and fitting (e.g., model- based data analy sis). In what follows, we  will review 

the four design choices in order.

6.3 What System Are We Modeling?

A useful first step in applying the formalism of Active Inference is to iden-

tify the bound aries of the system of interest  because we are interested in 

characterizing the interaction between what is internal to a system and the 

external world via sensory receptors and effectors (e.g., muscles or glands). As 
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discussed in chapter 3, a formal way to characterize the distinction between 

internal states of a system and external variables (and intermediate vari-

ables that mediate their interactions) is in terms of a Markov blanket (Pearl 

1988). To reiterate the argument, a Markov blanket may be subdivided into 

two sorts of variables (Friston 2013):  those that mediate the influence of 

the external world on internal states of the system of interest (i.e., sensory 

states) and  those that mediate the influence of internal states of the system 

of interest on the external world (i.e., active states). See figure 6.1.

Importantly,  there are many ways in which a boundary between internal 

and external may be defined. In most of the simulations we  will discuss in 

the second part of this book,  there  will be a (Markov blanket) separation 

between an agent (roughly, a living organism) and its environment. This cor-

responds to the usual setup of cognitive models, where an agent implements 

cognitive pro cesses such as perception and action se lection on the basis of its 

internal (e.g., brain) states and is provided with sensors and effectors.

External states
x

Active states
u

Sensory states
y

Blanket states
b = (u, y)

Internal states
µ

GENERATIVE PROCESS GENERATIVE MODEL

Figure 6.1
Action- perception loop between an adaptive system ( here, the brain) and the envi-

ronment, along with the Markov blanket (composed of active states and sensory 

states) that mediates their interaction. The figure implies that the adaptive system 

only affects the environment by performing actions (via active states) and that the 

environment only affects the adaptive system by producing observations (via sensory 

states). The figure exemplifies the distinction between the adaptive system’s genera-

tive model and the (external) generative pro cess that produces its observations.
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However, this is not the only possibility. From the perspective of neuro-

biology, we could draw a Markov blanket around a single neuron, around 

the brain, or around the entire body. In the first case, sensory states include 

postsynaptic receptor occupancies, and active states include the rate at 

which vesicles containing neurotransmitters fuse with the presynaptic 

membrane. The internal states of the neuron (e.g., membrane potentials, 

calcium concentrations) can then be thought of as inferring the  causes of its 

sensory states according to some (implicit) generative model (Palacios, Iso-

mura et al. 2019). This setup treats the external states (that are being mod-

eled) as including the neuronal network in which our neuron participates. 

This is very dif fer ent from the inference taking place when we assume our 

entire network is internal to the Markov blanket. For example, if we take a 

system whose sensory states are the photoreceptors in the ret ina and whose 

active states are the oculomotor muscles, the inferences performed by the 

internal states are about  things outside the brain. This speaks to the impor-

tance of scale, as the internal states of this Markov blanket include the 

internal states from the perspective of a single neuron. The latter  internal 

states appear to make inferences about  things within the brain when the 

Markov blanket is drawn around a single neuron but not when the blanket 

is drawn around the ner vous system.

The above is particularly relevant when dealing with embodied or 

extended perspectives on cognition (Clark and Chal mers 1998; Barsalou 

2008; Pezzulo, Lw et al. 2011). For example, if we draw the blanket around 

the ner vous system, the rest of the body becomes an external state, about 

which we must make inferences from interoceptive sensory states (Allen 

et  al. 2019). Alternatively, we could draw our blanket around the entire 

organism. This would make it look as if organs other than the brain  were 

making inferences about their environment. For example, depression of 

the skin in response to an external pressure could be framed as an inference 

about the source of the external pressure. The extended cognition perspec-

tive takes this further and says that objects external to the body may be 

incorporated into the Markov blanket (e.g., the use of a calculator to assist 

in inference implies that the calculator is part of the internal state- space 

of the inferring system). Fi nally, we could have multiple Markov blankets, 

nested within one another (e.g., brains, organisms, communities).

In sum, defining the Markov blanket ensures we know what is being inferred 

(external states) and what is  doing the inferring. Indeed, minimization of  free 
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energy with re spect to a generative model only involves the internal and 

active states of a system:  these only see the sensory states, so they can only 

infer the external state of the world vicariously.

6.4 What Is the Most Appropriate Form for the Generative Model?

Once we have de cided on the internal states of a system and the states that 

mediate their interaction with the world outside, we need to specify the 

generative model that explains how external states influence sensory states.

As discussed in previous chapters, Active Inference can operate on dif-

fer ent kinds of generative models. Therefore, we need to specify the most 

appropriate form of the generative model for the prob lem at hand. This 

implies making three main design choices. The first is a choice between 

models that include continuous or discrete variables (or both). The sec-

ond is a choice between shallow models, in which inference operates on a 

single timescale (i.e., all variables evolve at the same timescale), and hier-

archical or deep models, in which inference operates on multiple times-

cales (i.e., dif fer ent variables evolve at dif fer ent timescales). The third is 

a choice between models that only consider pre sent observations versus 

models having some temporal depth, which consider the consequences of 

actions or plans.

6.4.1 Discrete or Continuous Variables (or Both)?

The first design choice is to consider  whether generative models that use dis-

crete or continuous variables are more appropriate. The former include object 

identities, alternative action plans, and discretized repre sen ta tions of continu-

ous variables.  These are modeled through expressing the  probability—at each 

time step—of one variable transitioning into another type. The latter include 

 things like position, velocity, muscle length, and luminance and require a 

generative model expressed in terms of rates of change.

Computationally, the distinction between the two may not be clear- cut 

 because a continuous variable may be discretized, and a discrete variable 

may be expressed through continuous variables. However, this distinction 

is impor tant conceptually, as it underlies specific hypotheses about the 

time course (discrete or continuous) of the cognitive pro cesses of interest.1 

In most current implementations of Active Inference, high- level decision 

pro cesses, such as the choice between alternative courses of actions, are 
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modeled using discrete variables, whereas more fine- grained perception and 

action dynamics are implemented using continuous variables; we  will pro-

vide examples of both in chapters 7 and 8, respectively.

Furthermore, the choice between discrete and continuous variables is 

relevant for neurobiology. While each style of modeling appeals to  free 

energy minimization, the message passing  these imply take dif fer ent forms. 

To the extent that one considers message passing relevant for a pro cess the-

ory (see chapter 5), this implies that the neural dynamics that realize this 

minimization are dif fer ent  under each sort of model. Continuous schemes 

underwrite predictive coding— a theory of neural pro cessing that relies on 

top- down predictions corrected by bottom-up prediction errors. However, 

the analogous pro cess theories for discrete inferences involve messages of a 

dif fer ent form. Fi nally, the two types of model may be combined such that 

discrete states are associated with continuous variables. This means we can 

specify a generative model wherein a discrete state (e.g., object identity) 

generates some pattern of continuous variables (e.g., luminance). We  will 

discuss an example of a hybrid or mixed generative model that includes 

both discrete and continuous variables in chapter 8.

6.4.2 Timescales of Inference: Shallow versus Hierarchical Models

The second design choice concerns the timescales of Active Inference. 

One can select  either (shallow) generative models, in which all the vari-

ables evolve at the same timescale, or (hierarchical or deep) models, which 

include variables that evolve at dif fer ent timescales: slower for higher levels 

and faster for lower levels.

While many  simple cognitive models only require shallow models,  these 

are not sufficient when  there is a clear separation of timescales between dif-

fer ent aspects of a cognitive pro cess of interest. One example of this is in lan-

guage pro cessing, in which short sequences of phonemes are contextualized 

by the word that is spoken and short sequences of words are contextualized 

by the current sentence. Crucially, the duration of the word transcends that 

of any one phoneme in the sequence and the duration of the sentence tran-

scends that of any one word in the sequence. Hence, to model language pro-

cessing, one can consider a hierarchical model in which sentences, words, 

and phonemes appear at dif fer ent (higher to lower) hierarchical levels and 

evolve over (slower to faster) timescales that are approximately in de pen-

dent of one another. This is only an approximate separation, as levels must 
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influence each other (e.g., the sentence influences the next words in the 

sequence; the word influences the next phonemes in the sequence).

However, this does not mean we need to attempt to model the entire 

brain to develop meaningful simulations of a single level. For example, if 

we wanted to focus on word pro cessing, we could address some aspects 

without having to deal with phoneme pro cessing. This means we can treat 

input from parts of the brain drawing inferences about phonemes as pro-

viding observations from the perspective of word- processing areas. Phras-

ing this in terms of a Markov blanket, this typically means we treat the 

inferences performed by lower levels of a model as part of the sensory states 

of the blanket. This means we can summarize the inferences performed at 

the timescale of interest without having to specify the details of lower- level 

(faster) inferential processes— and this hierarchical factorization entails 

 great computational benefits.

Another example is in the domain of intentional action se lection, where 

the same goal (enter your apartment) can be active for an extended period 

of time and contextualizes a series of subgoals and actions (find keys, open 

door, enter) that are resolved at a much faster timescale. This separation of 

timescales,  whether in the continuous or discrete domain, demands a hier-

archical (deep) generative model. In neuroscience, one can assume that cor-

tical hierarchies embed this sort of temporal separation of timescales, with 

slowly evolving states at higher levels and rapidly evolving states at lower 

levels, and that this recapitulates environmental dynamics, which also 

evolve at multiple timescales (e.g., during perceptual tasks like speech recog-

nition or reading). In psy chol ogy, this sort of model is useful in reproducing 

hierarchical goal pro cessing (Pezzulo, Rigoli, and Friston 2018) and working 

memory tasks (Parr and Friston 2017c) of the sort that rely on delay- period 

activity (Funahashi et al. 1989).

6.4.3 Temporal Depth of Inference and Planning

The third design choice concerns the temporal depth of inference. It is impor-

tant to draw a distinction between two kinds of generative model: the first 

have temporal depth and represent explic itly the consequences of actions or 

action sequences (policies or plans), whereas the second lack temporal depth 

and only consider pre sent but not  future observations.  These two kinds of 

model are exemplified in figure 4.3: the dynamic POMDP at the top and the 

continuous- time model at the bottom.2 The key difference between  these 
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two models is not that they use discrete or continuous variables, respec-

tively, but that only the former (temporally deep) model endows creatures 

with the ability to plan ahead and select among pos si ble  futures.

Imagine a rodent who plans a route to a known food location in a maze. 

 Doing this benefits from a temporally deep model, loosely equivalent to a spa-

tial or cognitive map (Tolman 1948), which encodes contingencies between 

pre sent and  future locations conditioned on actions (e.g., the  future location 

 after turning right or left). The animal can use the temporally deep model to 

counterfactually consider multiple courses of action (e.g., series of right and 

left turns) and select the one expected to reach the food location.

Why is a temporally deep model required for planning? In Active Infer-

ence, planning is realized by calculating the expected  free energy associated 

with dif fer ent actions or policies and then selecting the policy that is associ-

ated with the lowest expected  free energy. Expected  free energy is not just 

a function of pre sent observations (like variational  free energy) but also a 

functional of  future observations. The latter cannot be observed (by defini-

tion) but only predicted using a temporally deep model, which describes 

the ways in which actions produce  future observations.

When designing an Active Inference agent it is useful to consider  whether 

it should have planning and future- oriented capacities— and, in this case, to 

select a temporally deep model. Furthermore, it is useful to consider plan-

ning depth— that is, how far in the  future the planning pro cess can look. 

Fi nally, one can design generative models that are both hierarchical and 

temporally deep, wherein planning proceeds at multiple timescales— faster 

at lower levels, and slower at higher levels.3 The decision  whether to model 

alternative  futures, contingent on policy se lection, is largely tied up with the 

choice between discrete and continuous models  because the idea of selecting 

between alternative  futures, defined by sequences of actions, is more simply 

articulated using discrete- time models.

6.5 How to Set Up the Generative Model?

When we have specified our system of interest and identified the relevant 

forms of the generative model (e.g., continuous or discrete repre sen ta tion, 

shallow versus hierarchical structure), our next challenges are to specify the 

specific variables to include in the generative model and decide which of 

 these variables remain fixed or change as an effect of learning.
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6.5.1 Setting Up the Variables of the Generative Model

The variables of generative models can be  either predefined or learned from 

data. For illustrative purposes, most models that we discuss in this book 

use predefined variables. When designing  these models, in practice, the 

main challenge is deciding which hidden states, observations, and actions 

are most appropriate for the prob lem at hand. For example, the perceptual 

model able to distinguish frogs from apples in chapter 2 only included two 

hidden states (frogs, apples) and two observations (jumps, does not jump). 

A more sophisticated model could include additional observations (e.g., 

red, green) as well as actions such as touching, which produce differential 

sensory effects (jump or no jump) in the presence of a frog or an apple.

Figure 6.2 schematically illustrates a generative model for the concept 

of a jumping frog. The concept is cast as a hierarchical model, where 

Tactile sensation
(e.g., wrinkliness)

Interoceptive sensations
(e.g., high heart rate)

Auditory sensations
(e.g., croaking)

Visual sensations
(e.g., green, jumping)

Action
(e.g., touching)

Visual percept

Jumping frog

Auditory percept

Tactile percept

Interoceptive percept

Figure 6.2
(Hierarchical) generative model for the concept of a jumping frog uses a simpli-

fied notation compared to chapter 4: nodes within the dotted circle correspond to 

hidden states, whereas nodes at the periphery correspond to sensory observations. 

Beliefs about hidden states, following inversion of the model, correspond to percepts 

that may be tied to a sensory modality (e.g., visual percept) or may be amodal (e.g., 

the jumping frog). Action contingencies are represented as dashed lines. Horizon-

tal dependencies between hidden states in dif fer ent modalities, as well as temporal 

dependencies between hidden states (as we saw in the dynamical generative models 

of chapter 4), are ignored for the sake of simplicity.
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a single (multimodal or supramodal) hidden state at the center of the 

figure unfolds in a cascade of (unimodal) hidden states corresponding 

to percepts in dif fer ent modalities (exteroceptive, proprioceptive, and 

interoceptive; see box 6.1) and ultimately causing sensations in the same 

modalities. This arrangement corresponds to casting the jumping frog con-

cept as the common cause of multiple sensory consequences (e.g., something 

green and jumping in the visual domain; a croaking sound in the audi-

tory domain), some of which can be action- contingent (e.g., the sight of 

something jumping may increase on touching it). The inversion of the 

generative model corresponds to a perceptual inference (e.g., the presence 

of a jumping frog) from its observed sensory consequences (e.g., the sight 

of something green and jumpy), and it integrates information across mul-

tiple modalities.

Once  these variables of interest have been established, the next exer-

cise is to write down the full generative model. One example is the  simple 

generative model for frogs and apples in figure 2.1, which is fully specified 

by prior beliefs about hidden states and a (likelihood) mapping between 

Box 6.1
Va ri e ties of sensory modalities: Exteroceptive, proprioceptive, and interoceptive

In Active Inference, a conceptual distinction is often made between three 

kinds of sensory modalities: exteroceptive (e.g., vision and audition), proprio-

ceptive (e.g., the sense of joint and limb positions), and interoceptive (e.g., 

the sense of the internal organs of the body, such as heart and stomach). In 

multimodal generative models, one can often factorize parts of the model that 

relate to dif fer ent modalities; this permits representing that (for example) sac-

cadic movements have visual but not auditory consequences.

Importantly, the same princi ples of Active Inference operate across all the 

modalities. For example, in the same way visual pro cessing can be described 

as the inference about (hidden variables about) a perceptual scene, intero-

ceptive pro cessing can be described as the inference about (hidden variables 

that report) the internal state of the body. Furthermore, motor actions that 

change the perceptual scene and internally directed actions that change the 

interoceptive state can be described in a similar way. The former engages spi-

nal reflexes that fulfill proprioceptive predictions, whereas the latter engages 

autonomic reflexes that fulfill interoceptive predictions. Such interoceptive 

pro cessing supports allostasis and adaptive regulation, and its dysfunctions 

can have psychopathological consequences (Pezzulo 2013, Seth 2013, Pezzulo 

and Levin 2015, Seth and Friston 2016, Allen et al. 2019).

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



116 Chapter 6

hidden states and observations and whose numerical values can be  either 

specified by hand or learned from data (see 6.5.2).

Beyond this  simple example, the ele ments that need to be specified are 

fully determined by the form of the selected generative model. For exam-

ple, the model for discrete- time POMDP shown in figure 4.3 (top) requires 

specifying the A, B, C, D, and E matrices; continuous schemes use analogous 

(although less alphabetical) ele ments, which  will be dealt with in chapter 8. 

But even in  these more complex cases, the exercise is not so dissimilar from 

above: namely, specifying prior beliefs about the variables of interest (e.g., in 

discrete- time implementations, about hidden states at the first time step in 

the D- vector and about observations in the C- matrix) and their probabilistic 

mappings (e.g., likelihood mapping between hidden states and observations 

in the A- matrix). However, in some cases, it is useful to think about factoriza-

tions of the state- space of the generative model, which avoids considering 

 every pos si ble combination of variables if some are unnecessary. In chapter 7, 

we  will discuss a biologically plausible example of factorization that occurs 

in perceptual pro cessing between “what” and “where” streams (Ungerleider 

and Haxby 1994)— namely, between variables that represent object identities 

and locations, respectively, which can be treated in de pen dently in the model 

(hence simplifying it) as they are often invariant to one another.

Deciding which variables are of interest and the ways they are related or 

factorized in the model is often the most challenging— but also the most 

creative— part of model design. It is an exercise of translating our cogni-

tive hypotheses into a mathematical form that supports Active Inference. 

How should we select the “right” variables? Ultimately, this is a question 

of specifying plausible alternatives and picking  those that have the lowest 

 free energy (cf. Bayesian model comparison). However, a practically use-

ful perspective for most studies is that the generative model should be as 

similar as pos si ble to how we believe data are generated. When appealing 

to Active Inference in the setting of cognitive psy chol ogy, this often means 

thinking about how experimental psychologists would go about generating 

the stimuli they pre sent to their experimental participants. On formalizing 

 these pro cesses in terms of the requisite probability distributions, we arrive 

at a generative model whose  free energy minimizing dynamics naturally 

lead to per for mance of the task in question.

 Here, we can draw an analogy with most Bayesian (or ideal observer) 

models of perception, in which the models are designed to mimic (to a 
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large extent) the structure of the task at hand, as in the example of rec-

ognizing a frog or an apple (chapter  2). This idea is sometimes equated 

with the good regulator theorem (Conant and Ashby 1970), which says that 

to regulate an environment effectively, a creature ( whether biological or 

synthetic) must be a good model of that system. From the perspective of 

eco- niche construction, this is sometimes phrased in terms of the (statisti-

cal) fitness (Bruineberg et al. 2018) of a creature’s model to its environment 

(and vice versa). However, this does not mean that an agent’s generative 

model has to be identical to the generative pro cess that actually generates 

data. For most practical applications, it can be simplified or dif fer ent. We 

 will return to this point  later in this chapter (6.6).

6.5.2 Which Parts of the Generative Model Are Fixed,  

and What Is Learned?

Another design choice is deciding which parts of the generative model are fixed 

and which ones are updated over time as an effect of learning. In princi ple, 

Active Inference allows  every part of the model— and even its structure—to be 

Box 6.2
Priors and empirical be hav ior

Another perspective on the issue of selecting priors draws from a set of results 

known as the complete class theorems (Wald 1947, Daunizeau et al. 2010), which 

state that any statistical decision procedure (i.e., be hav ior) may be framed as 

Bayes optimal  under the right set of prior beliefs. This means that if we are 

interested in explaining empirical be hav ior, our challenge is to identify the 

generative model (comprising prior beliefs) that would reproduce that be hav-

ior as simply as pos si ble. In short, priors are a statement of a hypothesis about 

the system in question. If other prior beliefs would be plausible, this offers an 

opportunity to put this to empirical data through Bayesian model comparison. 

This also has implications for computational phenotyping in clinical popula-

tions. That  there  will always be a set of prior beliefs that render be hav ior Bayes 

optimal implies the key question—in understanding the computational defi-

cits that give rise to psychiatric or neurological syndromes—is what  these priors 

are. This idea is slightly counterintuitive at first. However, the complete class 

theorem means that asking  whether a be hav ior is (Bayes) optimal is meaning-

less. The impor tant question is, What are the prior beliefs that would make this 

optimal? In chapter 9, we  will see how an appeal to  free energy minimization 

based on our own beliefs as scientists offers a way to answer this question.
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updated (or learned) over time. This renders learning a design choice rather 

than something mandatory. In keeping with this, we  will cover examples of 

Active Inference models that are completely designed by hand and examples 

in which some parts of the model (e.g., transition probabilities) remain fixed 

while  others (e.g., likelihoods) are updated over time.

In Active Inference, learning is cast as an aspect of inference, as a  free 

energy minimizing pro cess. So far, we have described inference in terms of 

an update of beliefs about states of the generative model. In much the same 

way, we can describe learning as an update of beliefs about par ameters of the 

generative model. For this, the generative model has to be endowed with 

prior beliefs about par ameters of the distributions to be learned, where the 

specific par ameters depend on probability distribution associated with each 

variable (e.g., mean and variance for a Gaussian distribution).  These prior 

values are updated to form posterior beliefs whenever new data are encoun-

tered. As we  will discuss in chapter 7, the algorithmic form of this update is 

the same as the update of state variables.

The fact that both inference and learning use the same kind of Bayesian 

belief updates may seem confusing during model design— partly  because 

deciding what should be modeled as a state or a pa ram e ter is not always 

straightforward. However, when it comes to cognitive models,  there is a 

clear difference between inference and learning. Inference describes (fast) 

changes of our beliefs about model states— for example, how we update our 

belief that  there is an apple in front of us  after observing something red. 

Learning describes (slow) changes of our beliefs about model par ameters— 

for example, how we update our likelihood distribution to increase the value 

of the apples- red mapping  after observing several occurrences of red apples. 

Beliefs about par ameters typically vary much more slowly than  those about 

states, and they may only be updated  after states have been inferred. From 

a neurobiological perspective, it is appealing to map inference to neuro-

nal dynamics and learning to synaptic plasticity. Furthermore, as we  will 

discuss in chapter 7, holding probabilistic beliefs about model par ameters 

induces novelty- seeking be hav iors so that creatures may select the best data 

to learn the causal structure of their worlds. This suggests that endowing 

Active Inference models with the ability to learn their par ameters (or even 

their structure; see chapter  7) is an effective way to study the behavioral 

dynamics of active learning and curiosity- based exploration.

Before concluding this section, it is worth noting that in this book we 

exemplify rather  simple generative models that are defined using tabular 
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methods (e.g., with explicit matrices for priors and likelihoods) and that 

operate in small state- spaces. In comparison, much more sophisticated 

kinds of generative models— and associated learning schemes— are being 

developed in fields like machine learning, deep learning, and robotics, such 

as, for example, variational autoencoders (Kingma and Welling 2014), gen-

erative adversarial networks (Goodfellow et al. 2014), recursive cortical net-

works (George et al. 2017), and world models (Ha and Schmidhuber 2018). 

In princi ple, one could borrow any of  these methods (and many  others) to 

implement one or more parts of Active Inference models (e.g., likelihood 

or transition models). By leveraging the most up- to- date machine learning 

methods, it would be pos si ble to scale up Active Inference to increasingly 

more challenging domains and applications; see, for example, Ueltzhöffer 

(2018) and Millidge (2019).

However,  there are some impor tant points to consider when designing 

Active Inference models that use sophisticated machine learning models, 

especially if one is interested in cognitive and neurobiological implications. 

One appeal of Active Inference is that it offers an integrative perspective on 

cognitive functions by assuming that (for example) perceptual inference, 

action planning, and learning all stem from the same  free energy minimiza-

tion pro cess. This integrative power would be lost if (for example) one juxta -

posed generative models that operate or learn in de pen dently from one 

another. Furthermore, the aforementioned machine learning methods cor-

respond to pro cess models that are distinct from Active Inference and have 

dif fer ent cognitive and neurobiological interpretations. Fi nally, when using 

machine learning methods, some of the design choices discussed  here (e.g., 

about the choice of model variables) may be skipped, as they are emergent 

properties of learning; however, they may be replaced by dif fer ent design 

choices, about (for example) number of layers, par ameters, and learning 

rates of a deep neural net.  These design choices potentially have relevant 

cognitive and neurobiological implications, which are beyond the scope of 

what we address  here.

6.6 Setting Up the Generative Pro cess

In Active Inference, the generative pro cess describes the dynamics of the world 

external to the Active Inference agent, which corresponds to the pro cess 

that determines the agent’s observations (see figure 6.1). It may seem bizarre 

to have postponed defining the generative pro cess  until  after describing the 
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agent’s generative model.  After all, a modeler would have some task (and 

generative pro cess) in mind from the beginning, so it would make perfect 

sense to revert this order and design the generative pro cess before the gen-

erative model, especially in applications where the generative model has to 

be learned during situated interactions, as in gamelike or robotic settings 

(Ueltzhöffer 2018, Millidge 2019, Sancaktar et al. 2020).

The reason we postponed the design of the generative pro cess is that, in 

many practical applications discussed in this book, we simply assume that 

the dynamics of the generative pro cess are the same as, or very similar to, 

the generative model. In other words, we generally assume that the agent’s 

generative model closely mimics the pro cess that generates its observations. 

This is not the same as saying that the agent has perfect knowledge of the 

environment. Indeed, even if the agent knows the pro cess that generates its 

observations, it may be uncertain about (for example) its initial state in the 

pro cess, as was the case in the apple versus frog example. In the language of 

discrete- time Active Inference, one could design a model in which both the 

generative model and the generative pro cess are characterized by the same 

A- matrix but in which the agent’s belief about its initial state (D- vector), 

which is part of its generative model, is dif fer ent from—or even inconsis-

tent with— the true initial state of the generative pro cess. One subtle  thing 

to notice is that even if both the generative model and the generative pro-

cess are characterized by the same A-  and B- matrices, their semantics are 

dif fer ent. The A- matrix of the generative pro cess is an objective property of 

the environment (sometimes called a mea sure ment distribution in Bayesian 

models), whereas the A- matrix of the generative model encodes an agent’s 

subjective belief (called a likelihood function in Bayesian models).

Of course, except in the simplest cases, it is not mandatory that the gen-

erative model and generative pro cess are the same. In practical implemen-

tations of Active Inference, one can always specify the generative pro cess 

separately from the generative model,  either using equations that differ 

from  those of the generative model or using other methods, such as game 

simulators, which take actions as inputs and provide observations as out-

puts (Cullen et  al. 2018), thereby following the usual action- perception 

loop implied by the Markov blanket of figure 6.1.

 There are some philosophical implications of designing generative mod-

els that are similar or dissimilar from the generative pro cess (Hohwy 2013; 

Clark 2015; Pezzulo, Donnarumma et al. 2017; Nave et al. 2020, Tschantz 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



A  Recipe for Designing Active Inference Models 121

et  al. 2020). As discussed above, the good regulator theorem (Conant and 

Ashby 1970) says that an effective adaptive creature must have or be a good 

model of the system it regulates. However, this can be achieved in vari ous 

ways. First, as discussed so far, the creature’s generative model can mimic 

(at least to a  great extent) the generative pro cess. Models developed in this 

way may be called explicit or environmental models, given the resemblance 

between their internal states and the environment’s external states. Second, 

the creature’s generative model can be much more parsimonious than (and 

even significantly dif fer ent from) the generative pro cess, to the extent that 

it correctly manages  those aspects of the environment that are useful to act 

adaptively in it and achieve the creature’s goals. Models developed in this 

way may be called sensorimotor or action oriented, as they mostly encode 

action- observation (or sensorimotor) contingencies and their primary role 

is supporting goal- directed actions as opposed to providing an accurate 

description of the environment.

The difference between explicit and action- oriented models can be 

appreciated if we consider dif fer ent ways one can model (for example) a 

rodent trying to escape from a maze in which some corridors are dead ends. 

An explicit generative model may resemble a cognitive map of the maze 

and provide a detailed characterization of external entities, such as spe-

cific locations, corridors, and dead ends. This model may permit the rodent 

to escape from the maze using map- based navigation. An action- oriented 

model may instead encode contingencies between whisker movements and 

touch sensations. This latter model would afford the se lection of contextu-

ally appropriate strategies, such as moving forward (if no touch sensation 

is experienced or expected) or changing direction (in the opposite case)— 

eventually permitting the rodent to escape from the maze without explic-

itly representing locations, corridors, or dead ends.  These two kinds of 

model prompt dif fer ent philosophical interpretations of Active Inference, 

considering generative models as ways to  either reconstruct the external 

environment (explicit) or afford accurate action control (action oriented).

Fi nally, as discussed in the field of morphological computation (Pfeifer and 

Bongard 2006), some aspects of a creature’s or a robot’s control can be out-

sourced to the body and hence do not need to be encoded in its generative 

model. One example is the passive dynamic walker: a physical object resem-

bling a  human body, composed of two “legs” and two “arms,” which is able 

to walk an incline with no sensors, motors, or controllers (Collins et  al. 
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2016). This example implies that at least some aspects of locomotion (or 

other abilities) can be achieved with body mechanics that are carefully tuned 

to exploit environmental contingencies (e.g., an appropriate body weight or 

size to walk without slipping); therefore,  these contingencies do not need to 

be encoded in the creature’s generative model. This suggests an alternative 

way to design Active Inference agents (and their bodies) that are—as opposed 

to have— good models of their environment. Yet all the ways to design Active 

Inference models are not mutually alternative but can be appropriately com-

bined, depending on the prob lem of interest.

6.7 Simulating, Visualizing, Analyzing, and Fitting Data  

Using Active Inference

In most practical applications, once the generative model and generative 

pro cess have been defined, one only needs to use the standard procedure 

of Active Inference— the descent of the active and internal states on the 

 free energy functional associated with the model—to obtain numerical 

results. Arguably, modelers’ goals are to simulate, visualize, analyze, and fit 

data (e.g., conduct model- based data analy sis). Standard routines for Active 

Inference that provide support for all  these functions are freely available 

(https:// www . fil . ion . ucl . ac . uk / spm / ); an annotated example of using  these 

routines is provided in appendix C.

Although in most cases Active Inference procedures function off- the- 

shelf, in some practical applications one may consider specific fine- tunings 

or changes. For example, specifying the temporal depth of planning defines 

how many  future states are considered during expected  free energy compu-

tations. Setting up a  limited temporal depth, along with other approxima-

tions to exhaustive search such as sampling (Fountas et al. 2020), may be 

useful in practical applications of Active Inference in large state- spaces.

Another example of adapting the standard functioning of Active Infer-

ence is the selective removal of parts of the expected  free energy equation. 

This ablation may be useful to compare standard Active Inference (that uses 

expected  free energy) with reduced versions, in which some parts of the 

expected  free energy are suppressed to render them formally analogous to 

(for example) KL control or utility maximization systems (Friston, Rigoli 

et al. 2015). Furthermore, one can also augment Active Inference models 

with additional mechanisms, such as habitual learning (Friston, FitzGerald 
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et al. 2016) or learning rate modulation (Sales et al. 2019), with the caveat 

that maintaining the normative character of Active Inference would require 

casting  these additional mechanisms in terms of  free energy minimization.

Fi nally, other fine- tunings or changes to Active Inference may be useful 

to characterize disorders of inference and psychopathological conditions— 

for example, to explore the behavioral and neuronal consequences of endow-

ing a creature’s generative model with excessively strong (or weak) priors 

via excessively high (or low) levels of neuromodulators. We  will provide 

some examples of Active Inference models that are relevant for psychopa-

thology in chapter 9.

6.8 Summary

In this chapter, we have outlined the most impor tant design choices that 

must be made in setting up an Active Inference model. We provided a  recipe 

in four steps and some guidelines to address the usual challenges that model 

designers face. Of course, it is not necessary to follow the  recipe in a rigid man-

ner. Some steps can be inverted (e.g., design the generative pro cess before the 

generative model) or combined. But in general,  these steps are all required. 

This sets up the remainder of this book, which puts  these ideas into practice 

through a series of illustrative examples designed to showcase the theoretical 

princi ples presented in the first half of the book. In every thing that follows, 

the only differences among the examples rest on the design choices we have 

highlighted  here. Part 2 illustrates systems with dif fer ent bound aries, with 

discrete or continuous dynamics at dif fer ent timescales, for which the choice 

of prior beliefs is fundamental in reproducing be hav ior across many dif fer ent 

domains— but all implementing the same Active Inference.
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What I cannot create, I do not understand.

— Richard Feynman

7.1 Introduction

So far, we have discussed the princi ples of Active Inference at a relatively 

abstract level. This chapter deals with specific examples— and how they may 

be specified in a practical setting. We focus on models of categorical vari-

ables in discrete time. Through a series of examples, building in complexity, 

we illustrate models of perceptual pro cessing, decision- making, information 

seeking, learning, and hierarchical inference.  These examples are chosen to 

highlight as simply as pos si ble emergent properties— including mea sur able 

physiology and be hav ior—of Active Inference schemes.

7.2 Perceptual Pro cessing

We begin by considering perceptual pro cessing and the inversion of the 

sort of discrete- time models introduced in chapter 4.  Later in this chapter, 

we build to a full partially observable Markov decision pro cess (POMDP). 

However, we start with a special case of a POMDP in which we can ignore 

choices and be hav ior: a hidden Markov model (HMM), which may be used 

for perceptual inference of a sequential and categorical sort (see figure 7.1). 

To motivate this, we  will appeal to a  simple example. Imagine listening to 

a per for mance of a short piece of  music. The sequence of notes that are 

written in the score may be thought of as hidden (unobserved) states, while 

the sequence of notes we actually hear are the (observable) outcomes. If 

the performer is a professional musician, the correspondence between the 

7 Active Inference in Discrete Time
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hidden states and the outcomes may be very close. However, if an  amateur, 

 there may be an additional degree of stochasticity in the (likelihood) map-

ping from the note that should be played to that which is heard. In this sce-

nario, it may still be pos si ble to infer which note should have been heard, 

given prior beliefs about the probability that each note is preceded or suc-

ceeded by another.

The example of listening to the amateur musician may be formalized in 

the following way. First, we decide on how reliably our musician actually 

plays the note (outcome) she intends to (hidden state). We can express this 

through the A- matrix, whose ele ments indicate the probability of an outcome 

(rows) given a state (columns). In our toy example, we set this as follows:

A = 1
10

7 1 1 1
1 7 1 1
1 1 7 1
1 1 1 7

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

(7.1)

This says that 70  percent of the time, our musician hits her intended note. 

We then specify the transition probabilities in the B- matrix, which account 

for the probability of the next state (rows) given the current state (columns):

B = 1
100

1 1 1 97
97 1 1 1
1 97 1 1
1 1 97 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

(7.2)

D DB B

AA A A

B

P(oτ | sτ)

P(sτ+1 | sτ)

P(s1)sτ–1 sτ+1sτ

oτ–1 oτ+1oτ

Figure 7.1
This hidden Markov model uses the same notation introduced in chapter 4 to express 

a sequence of states (s) that evolve through time. At each time, they give rise to an 

observable outcome (o). The state at one time depends only on the state at the previ-

ous time (with this de pen dency expressed in B). The first state in the sequence has 

prior probability D. The generation of outcomes from states depends on the likeli-

hood distribution (A). This specification of an HMM is generic, with specific generative 

models depending on specific choices for A, B, and D.

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



Active Inference in Discrete Time 127

This says that  there is a 97  percent probability of the first note being fol-

lowed by the second, the second by the third, and so on. If we know that 

the sequence always begins with the first note, we set the prior probability:

D =

1

0

0

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥  

(7.3)

Together, equations 7.1–7.3 completely specify the HMM generative 

model shown in figure 7.1. In other words, they provide a description of our 

beliefs about how the  music we hear is generated by our amateur musician. 

Using equation 4.12 and substituting in our generative model, we can simu-

late the dynamics of the Bayesian belief updating induced by a sequence 

of outcomes. This is shown in figure 7.2. Note the increase in confidence 

shown in the upper- left plot as more data are accumulated over time, except 

for the third time step, where an unexpected outcome has occurred. This 

outcome could be explained in two ways. First, it may be that the intended 

note  really was an unusual note  under our prior beliefs in equation 7.2. This 

is made less likely by the rarity of such transitions  under the B- matrix of 

this model. The alternative, more plausible explanation is that the musician 

played the wrong note by  mistake. As shown in the third column of the 

upper- right plot, this is the explanation that our simulated listener  settles 

on. However, a nonzero probability is assigned to the possibility that it was 

the right note  after all. The capacity to report this sort of uncertainty is a key 

feature of the Bayesian perspective afforded by Active Inference.

The model shown  here may be made more sophisticated in many ways, 

but perhaps the simplest relies on the factorization of the state- space (Mirza 

et al. 2016). An example might be the pitch and dynamics of the note (with 

a similar distinction in the outcomes). In a visual inference task, the fac-

torization may be into what and where, which has a  great deal of currency 

in neurobiology (Ungerleider and Haxby 1994). In subsequent sections, we 

 will appeal to this sort of factorization to separate  those states that can be 

influenced by the creature in question from  those that cannot. For further 

reading on this sort of model (without actions in play) and the kinds of 

neuronal message passing scheme that might be used to invert it through 

minimizing  free energy, see Parr, Markovic et al. (2019).
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Figure 7.2
 These simulated perceptual inference plots illustrate the belief- updating pro cess in 

an example trial based on the generative model outlined in the main text. Upper- 

left: Beliefs (posterior probabilities) about each note in the sequence at each time 

step. Upper- right: As the numerical values of  these beliefs are difficult to track the 

beliefs at the end of the sequence, having heard each note (i.e., retrospective beliefs) 

are shown. Each column shows (retrospective) beliefs about the hidden states at a 

given time step. Each row represents an alternative hypothesis for that hidden state. 

The darker the shading, the more probable that note is considered to have been 

(with black indicating a probability of one and white a probability of zero). Lower- 

left: (Negative)  free energy gradients (i.e., prediction errors) over time. The rate of 

change of the beliefs in the upper- left plot is determined by the value of  these errors 

at each time step. Lower- right: Sequence of musical notes presented to our synthetic 

agent (i.e., the observations he receives during time steps 1 to 5). Note that while 

at the third time step (o3) the listener heard the second note (third column of the 

lower- right plot), he infers the third note with higher probability (third column of 

the upper- right plot).
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7.3 Decision- Making and Planning as Inference

The HMM used above illustrates a very  simple form of categorical inference 

based on a sequence of outcomes. However, the sort of (sessile) creature 

that this describes is rather uninteresting. Autonomous creatures are clearly 

more than passive recipients of sensory data. Instead, they actively change 

their environment and engage in a bidirectional exchange with their senso-

rium. This speaks to the importance of converting an HMM into a POMDP, 

whereby we must infer not only how our environment is changing but also 

how our chosen course of action changes it and which course of action to 

choose.

Figure 7.3 shows a POMDP generative model. This is the same as that 

introduced in chapter 4, where the details of inference in this sort of model 

are unpacked. Note the similarity of this structure to the HMM in figure 7.1 

A A A

B B

G

�

D

A

B

C

D

G

sτ–1 sτ+1sτ

oτ–1 oτ+1oτ
P(� | C, E)

P(s1
n)

P(sn
τ+1 | sτ

n, �)

P(oτ
m | sτ

1, sτ
2,…,sn

τ ,…)

P(oτ
m)

Figure 7.3
POMDP from figure 4.3, unpacking the probability distributions in terms of hidden 

state  factors and outcome modalities. (Figure 7.1 is a special case of this structure.) 

Three points of note: First, the factorization of the hidden states now means that the 

distribution encoded by A has (potentially) many state  factors in its conditioning 

set and can no longer be encoded by a matrix. Instead, this becomes a tensor object, 

in which each index corresponds to a state  factor. Second, the separation of the 

outcomes into dif fer ent modalities means  there  will be a separate A tensor for each 

modality. Third, while C and E appear in the panel on the right, they do not appear 

in the  factor graph on the left  because they only get into the generative model via 

prior beliefs about policies. For an alternative perspective on this, see Parr and Friston 

(2018d) and van de Laar and de Vries (2019).

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



130 Chapter 7

and the addition of an extra variable (π ), on which the transition probabili-

ties (B) are conditioned. This means we can entertain alternative hypotheses 

about the dynamics of states.  These hypotheses may be interpreted as plans 

that a creature may select between. This perspective equates policy evalua-

tion with model comparison and says that a policy is simply an explanatory 

variable for an observed sequence of (self- generated) sensations.

The model in figure 7.3 differs subtly from that introduced in chapter 4: it 

allows factorization of states (superscript n) and of outcomes (superscript m). 

The utility of this is obvious when we consider the factorization of the visual 

world into where an object is and what it is. Clearly, it would be extremely 

inefficient (and incur a high complexity cost) to represent  every pos si ble 

combination of location and identity, when identity is (normally) invariant 

to location and vice versa. A similar argument may be used for factorization 

of time from identity and location (Friston and Buzsaki 2016). The benefit 

of introducing this factorization at this stage is that we can separate  those 

states of the world over which a creature has control from  those that it does 

not. While the transition probabilities governing the former  will be dif fer ent 

 under each policy, the latter  will be invariant to this.

With  these preliminaries in place, we now outline a  simple example of 

a task (Friston, FitzGerald et al. 2017) that requires planning and illustrates 

some of the key aspects of active inference using POMDPs. This involves a 

rat in a T- maze containing an aversive stimulus in one arm, an attractive 

stimulus in another, and a cue that indicates the location of the two stimuli 

in the final arm. This setup means that the rat can behave in (broadly) two 

ways. It could choose to go straight to one of the two arms that might con-

tain the attractive stimulus, risking the aversive stimulus. Alternatively, it 

could choose to seek out the informative cue and then go to the arm most 

likely to contain the attractive stimulus.

This choice speaks to the classical exploration- exploitation dilemma in 

psy chol ogy: a dilemma that is resolved  under Active Inference. The resolu-

tion stems from the minimization of expected  free energy mandated by 

prior beliefs about policies. To review this briefly (see chapter 4 for details), 

the most probable policies (for a creature who minimizes its variational  free 

energy) are  those that lead to the lowest expected  free energy. The expected 

 free energy has the following form:

G(π ) = EQ ( !s |π )[H[P( !o | !s)]]− H[Q( !o |π )]
Negative epistemic value (−I (π ))

! "###### $######
− EQ ( !o |π )[ ln P( !o |C)]

Pragmatic value
" #$$$ %$$$

 
(7.4)
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This decomposition of the expected  free energy into epistemic and prag-

matic value highlights the (epistemic) drive  toward information gathering 

and the (pragmatic) drive  toward realizing prior beliefs (C in figure 7.3). We 

 will attempt to provide a deeper intuition for the epistemic value in the next 

section, but it can be thought of simply as the amount of information we 

stand to gain  under a specific policy. The form of the pragmatic value effec-

tively treats the probability of outcomes, averaged over all policies, as if it 

 were a prior. In  doing so,  those policies with consequences consistent with 

this prior become more probable, as they are associated with lower expected 

 free energy. To put this in more intuitive terms, if we consider a certain sort 

of observation to be very probable, we  will act to fulfill our belief that we 

 will encounter  these. Therefore, the log probability of outcomes may be 

thought of as equivalent to a utility function in other formalisms, such as 

optimal control theory and reinforcement learning. The fact that utility 

and the value of information emerge as two components of the expected 

 free energy means that we do not need to worry about balancing explora-

tion and exploitation. Both are in ser vice of optimizing the same function.

To see how this unfolds in the T- maze example, we need to formalize the 

generative model in the same way as with the HMM above. Figures 7.4–7.6 

illustrate the likelihood and transition probabilities that comprise the gen-

erative model for the T- maze. We  will go through this in some detail, as this 

minimal example provides the building blocks from which readers can con-

struct their own generative models. The first  thing to do is to decide on the 

number of outcome modalities that represent the (sensory) data our model is 

supposed to explain. This tells us the number of A- matrices we must specify. 

 Here, we have two modalities that represent exteroceptive data pertaining to 

where the rat is in the maze (A1) and a what modality that may be the intero-

ceptive data the rat experiences when it has found the attractive (edible) stim-

ulus (A2). The levels in  these modalities (i.e., the alternative observations that 

could be made in each) determine the rows of each A- matrix. The next deci-

sion is the number of hidden state  factors that may be used to explain  these 

data; this is the number of B- matrices we require. We consider two  factors 

 here: the position of the rat in the maze, and the context (attractive stimu-

lus on left or right).  These have four and two levels, respectively. We now 

must specify, for each combination of hidden states, the probability of each 

outcome. Context 1 is shown in figure 7.4; context 2 is shown in figure 7.5. 

For the first modality, our A1 associates each location with an outcome with 
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probability one. The cue location may be associated with a left or a right 

cue, depending on the context. The interoceptive modality (A2) associates 

a neutral outcome with the start and cue locations and a 98  percent chance 

of finding the attractive outcome when the context matches the arm of the 

maze the rat has entered. Technically,  these A- matrices are tensor quantities, 

 because their ele ments are specified by three numbers (outcome, location, 

and context), while a matrix is only specified by two (row and column).

We then need to specify transition probabilities. The B- matrices specify 

the probability of transitioning from a state (column) to another state (row), 

depending on the choice of policy (π ).  These specify the transitions pertain-

ing to the position of the rat in the maze (B1) and transitions in the context 

R A2 2

298

98
100

100 100

100

1 1 0

0 0

0 0

0

A

L

R

1 O O O

O O O O

O O O 1

O O 1 O

O 1 O O
1

Figure 7.4
Likelihood in context 1. Left: T- maze configuration of cues and stimuli: the attractive 

stimulus is on the right and the aversive stimulus is on the left. Right: Likelihood or 

observation model specifies the probabilistic mapping from location to exteroceptive 

cues (A1) and to interoceptive cues (A2). Each ele ment of  these matrices is the prob-

ability of the outcome illustrated at the end of the row, conditioned on the context 

being one, and on being in the location indicated by the row. The exteroceptive 

outcomes are visual or proprioceptive input associated with each location, whereby 

the cue location can give rise to a rightward or a leftward cue. The interoceptive 

outcomes are absent (circle with dashed outline), attractive (filled circle), or aversive 

(unfilled circle).
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(B2). Figure  7.6 shows the controllable B1- transitions. Each matrix shows 

the probabilities  under a dif fer ent action choice (subscripted).  These allow 

a move from any location to any other location, except for from the two 

arms of the maze, which are absorbing states. This means that once  there, 

the rat must stay  there, regardless of the actions it chooses. In contrast, the 

rat has no control over the context (i.e.,  whether it is in context 1, shown 

in figure 7.4, or context 2, shown in figure 7.5). Context stays constant over 

time and can be represented as an identity matrix:

Bπ
2 = 1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥

 
(7.5)

 Here each column (and row) refers to a state indexing  either figure 7.4 

or figure  7.5. This means that whichever context we start in stays con-

stant (transitions to itself ) over time. This is true regardless of the policy 

selected. The C1- vector shows prior preferences for each of the outcomes in 

this modality, with uniform preferences except for a slight aversion (−1) to 
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Figure 7.5
Likelihood in context 2. Nearly identical to figure 7.4—in this context, the aversive 

and attractive stimuli have been swapped. This is reflected in the probability of the 

exteroceptive outcomes in the cue location and the probabilities of the interoceptive 

outcomes in the right and left arms of the maze.
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the start location. The C2- vector specifies preferences (+6) for the attractive 

stimulus and aversion (−6) to the aversive stimulus. The absence of  either is 

considered neutral (0).

C1 = σ [−1, 0, 0, 0, 0]T( )
C2 = σ [0, 6, −6]T( )  

(7.6)

The order of ele ments in  these vectors corresponds to the order of rows 

in the corresponding A- matrices. The softmax function (σ ) allows us to 

specify preferences in terms of positive and negative values (corresponding 

to unnormalized log probabilities), which are then converted to probabili-

ties. This preserves the difference in log probabilities (or the relative prob-

ability) while ensuring normalization. Practically, this formulation means 

the attractive stimulus is considered e6 (≈ 400) times more probable than 

the neutral stimulus  under the rat’s generative model. This is a very strong 

preference that means the rat believes its actions are much more likely to 

lead to the attractive outcome. This constraint on inference about action is 

1 1 0 0
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Figure 7.6
Controllable transition probabilities for moving between the dif fer ent locations. Each 

of the four matrices corresponds to an alternative action the rat can choose.  These 

allow for a move from any state (except the right and left arm) to any other state. The 

right and left arms are absorbing states, in which the rat must stay once entered.
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crucial for the be hav ior that follows. Fi nally, the D- vectors specify the prior 

probabilities for the initial states:

D1 = 1, 0, 0, 0[ ]T

D2 = 1
2 1,1[ ]T  

(7.7)

The order of ele ments in  these vectors matches  those of the B- matrices. The 

D1- vector indicates a confident belief in starting at the center of the maze. 

The D2- vector indicates that the two contexts (figure 7.4 or 7.5) are consid-

ered equally probable at the start.

Figure 7.7 shows what happens when we invert the generative model of 

figures 7.4–7.6. The upper row illustrates what we would see if observing 

the rat’s be hav ior. It starts in the center and then goes to the informative 

cue. This is due to the high epistemic value associated with this location (i.e., 

the observations made at this location have the potential to resolve uncer-

tainty about the context). On seeing the cue that indicates a left context 

(context 1), the rat chooses the left arm of the maze and finds the reward-

ing stimulus. This move is driven by the high pragmatic value attributed 

to this location. The lower plots illustrate the belief updating that occurs 

during this  simple trial. As in figure 7.2, this is shown in the form we might 

expect to observe in an idealized rat if we  were mea sur ing neuronal activity 

(i.e., firing rates and local field potentials [LFPs]). Note the rapid change in 

beliefs at the second time step, when the rat reaches the informative cue 

location, and associated LFP (dashed line).

7.4 Information Seeking

The simulation in section 7.2 illustrates a  simple example of an exploration- 

exploitation trade- off, which is solved by foraging for information  until 

uncertainty is resolved, then exploiting what has been inferred to fulfill 

prior preferences. In this section, we unpack the concept of epistemic value 

in greater detail. As we saw in equation 7.4, this comprises two terms:

I (π )
Epistemic value
!

= H[Q( !o |π )]
Post. pred. entropy
! "# $#

− EQ ( !s |π )[H[P( !o | !s)]]
Expected ambiguity
! "### $###

= DKL[P( !o | !s)Q( !s |π ) ||Q( !o |π )Q( !s |π )]
Mutual information

! "####### $#######

= EQ ( !o |π )[DKL[Q( !s |π , !o) ||Q( !s |π )]]
Information gain, salience, Bayesian surprise
! "###### $######

; Q( !s |π , !o) !
P( !o | !s)Q( !s |π )

Q( !o |π )
 

(7.8)
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Figure 7.7
Simulated epistemic and pragmatic be hav ior of a rat foraging in a T- maze. The rat 

starts in the central location but then chooses to sample the informative cue in the 

lower arm of the maze. This location is associated with the greatest epistemic value, 

as observing the cue in this location reveals the context (reward right or left) that 

the rat finds itself in. On observing the cue, the rat undergoes rapid belief updating 

(s), inducing an LFP (ε ). With no more uncertainty to resolve, the rat selects the prag-

matically valuable option and goes to the left arm of the maze. The two plots on the 

right show the beliefs held by the rat at the end of the trial about all previous times 

(i.e.,  these are retrospective beliefs and not the beliefs of the rat at the moment of 

the decision). It believes (correctly) that it started in the central location, went to the 

cue arm, and then went to the left arm. For the context hidden state  factor, the rat 

believes that the context was the left context throughout.
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 These are the posterior predictive entropy and the expected ambiguity, respectively. 

Below  these, we highlight the correspondence between  these and other rear-

rangements. To unpack  these in an intuitive way, we  will frame this in terms 

of a visual paradigm, where alternative saccades (π ) lead to dif fer ent transi-

tions between fixation locations (s). In addition to fixation locations, the hid-

den states include the identity of a stimulus at each location. A combination 

of stimulus and fixation generate visual and proprioceptive consequences (o). 

With this in mind, we can interpret the posterior predictive entropy as the 

dispersion (or uncertainty) associated with “what I would see if I performed 

this eye movement.” From the perspective of a scientist, this quantifies how 

uncertain we might be about the data we would obtain on performing a given 

experiment.  Under this perspective, it makes sense that we should select 

 those saccades (or experiments) that are associated with the greatest posterior 

predictive entropy, as  these offer the greatest potential for uncertainty reso-

lution. We would gain nothing by performing an experiment if we already 

knew what the results would be with a high degree of confidence.

However, the predictive entropy only tells us the total amount of uncer-

tainty. It does not tell us how much uncertainty is actually resolvable. We 

 will always be uncertain about the next number in a sequence of randomly 

generated numbers, but we  will never resolve our uncertainty about the 

pro cess generating them by fixating on  these. This is where the expected 

ambiguity comes in. This quantifies the degree to which observations and 

states are in de pen dent of one another. If states always generate the same 

observation, this quantity  will be zero. It  will be maximal if, as in the ran-

dom number generator,  there is no association between states and outcomes. 

In the visual domain, this implies that the best saccade  will be that  toward a 

well- lit stimulus, where  there is  little ambiguity about “what I would see if I 

looked at this stimulus.” Taken together, this says that the best saccades (i.e., 

perceptual experiments) are  those for which  there is the greatest uncertainty 

to resolve (posterior predictive entropy) but only if that uncertainty can be 

resolved (negative ambiguity). Interestingly, this has exactly the same form 

as expressions developed in statistics to score experimental design in terms 

of information gain (Lindley 1956).

Figure  7.9 illustrates what happens in a saccadic paradigm (Parr and 

 Friston 2017b) when we simulate manipulations to the ambiguity and pos-

terior predictive entropy. This shows four stimuli (squares), each of which 

may change color from moment to moment. Superimposed on  these is a 
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simulated eye- tracking trace, as if we  were mea sur ing where an experimental 

participant was looking. Crucially, we specify prior beliefs about outcomes 

to be uniform (i.e., pragmatic value to be absent), precluding any preference- 

based choices. This means each saccade is selected to maximize epistemic 

value. When the generative model treats all four stimuli as equivalent (left 

image), all are sampled with approximately the same frequency. However, 

we can modulate the uncertainty associated with each stimulus (see box 

7.1). If we set one stimulus to have a greater ambiguity (by increasing the 

value of off- diagonal ele ments of the corresponding A- matrix), this square 

is ignored ( middle image). This is an example of the famous “streetlight” 

effect (Demirdjian et al. 2005), which takes its name from the meta phor of 

Box 7.1
Uncertainty and precision

The example in figure 7.7 appeals to the concept of precision—an impor tant 

idea in this book. Precision is the inverse of variance and scores our confi-

dence in a given probability distribution. This is closely related to the negative 

entropy (negentropy) of a distribution:

−H[P(s)]= EP(s)[ ln P(s)]

A  simple way to pa ram e terize a distribution such that it can be made more 

or less precise is to use a Gibbs form with an inverse temperature pa ram e ter (ω ). 
This has the following form:

P(s |ω ) = Cat(σ (ω lnD))

Note that the precision multiplies the log prior, so it can be interpreted as a 

gain- control device (amplifying as opposed to adding to neural signals). The 

plots in figure 7.8 show how the probability distribution (each column repre-

senting the probability of an alternative state) changes for a given D when we 

vary ω. Note the increasing confidence with increasing precision.

This sort of pa ram e terization may be applied to any of the distributions 

used in a POMDP. In addition, we can define priors over the precision and infer 

ω = 0.1 ω = 1 ω = 10 ω = 100

Figure 7.8
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this just as we infer other latent variables (i.e., through  free energy minimiza-

tion). Assuming the prior has a Gamma distribution (precluding negative val-

ues of the precision), we get the following updates (see appendix B for details):

P(ω ) = Γ(1,βω )

Q(ω ) = Γ(1,βω )

⇒β
.
ω = (Dβω−1 − s) i ln D + βω − βω

 There is an increasing recognition that the biological substrate of  these 

precision par ameters may be the neuromodulatory systems that set the gain of 

neural responses. Chapter 5 discusses the evidence relating  these par ameters 

to specific neurochemicals.

Figure 7.9
Simulated epistemic visual search paradigm (Parr and Friston 2017b) with the syn-

thetic eye- tracking trace superimposed on the four stimulus locations. Each stimu-

lus (shaded square) is associated with a transition matrix that may be more or less 

predictable and a likelihood matrix that may be more or less ambiguous. Left: When 

transitions and likelihoods are equally predictable for all four locations, all locations 

are sampled with about the same frequency.  Middle: The viewer shows aversion to 

the upper- left square when it is specified with a less precise (more ambiguous) like-

lihood mapping. Right: The lower- left square is epistemically attractive when the 

transition probabilities are specified as more uncertain.

Box 7.1 (continued)
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 people who have lost their keys late at night. The first place they might look 

is  under the streetlight— not  because the keys are most likely to be  there, but 

 because it is the best place to find high- quality, unambiguous, uncertainty- 

resolving information. The simulation shows how the ambiguous (e.g., 

poorly lit) square is ignored, reproducing an in silico streetlight effect.

In contrast, the right image in figure 7.8 shows what happens when we 

make the transitions less predictable for the lower- left square. We accumu-

late uncertainty about this location very quickly, ensuring a high posterior 

predictive entropy with no change to the ambiguity. As we can see, this 

leads to more frequent fixation on this location, as  there is always new 

uncertainty to resolve  here. Intuitively, if I know something has very pre-

dictable dynamics, I do not have to look at it very often to be confident 

about its state. In contrast, if something may have changed in the time that 

I have been looking at something  else, it is worth looking back at to check. 

 These simulations are designed to offer an intuition for the two parts of the 

epistemic value, to see how minimization of expected  free energy ensures 

we actively select our sensory data to find out about the world.

7.5 Learning and Novelty

Sections 7.2–7.4 set out every thing that is required for the majority of prac-

tical applications of Active Inference. However, we have assumed that the 

generative model is already known and does not change as an effect of learn-

ing. In some practical applications, we may want to consider how one or 

more parts of the generative model (e.g., the A-  or B- matrix) are learned 

during an experiment or, more broadly, how we optimize the structure of 

the generative model itself, given some data (Friston, FitzGerald et al. 2016). 

In  doing so, Active Inference extends to active learning, and the salience 

(equation 7.5) describing information gain about states is complemented 

by novelty, which deals with resolution of uncertainty about (for example) 

the ele ments of the A matrix shown in equation 7.1, the B matrix shown in 

equation 7.2, or any other par ameters of the generative model.  These beliefs 

can now vary with time rather than being fixed, as assumed so far (Schwart-

enbeck et al. 2019). To get to this, we first have to extend the generative 

model as in Figure 7.10 to include beliefs about  these model par ameters.

Conceptually, including beliefs about par ameters in the generative model 

permits treating learning as another form of Bayesian inference— namely, 
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as the passage from prior to posterior beliefs about model par ameters. This 

highlights the fundamental similarity of perception and learning: in the 

same way that perception can be described as the inversion of a generative 

model to infer hidden states from observations, learning can be described 

as the inversion of a generative model to include beliefs about par ameters 

(although normally this inversion may operate on a slower timescale).
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Figure 7.10
This generative model for learning uses the same POMDP structure as in figure 7.3, 

but the priors for each of the hidden states now depend on variables (in circles), 

which themselves now come equipped with prior beliefs.  These have the form of 

Dirichlet distributions, which are conjugate (see box 7.2) to the categorical distribu-

tions considered thus far. The model shows how the likelihood of outcomes given 

states now also depends on a variable A (which is the same for all time- points), the 

transition probabilities are now conditioned on a variable B, the preferences depend 

on C, the initial states depend on D, and the fixed form policy prior depends on E. By 

making prior beliefs about the par ameters of the generative model explicit, this figure 

emphasizes that both inference and learning are  free energy minimizing pro cesses, 

but they are distinct. In short, inference describes the optimization of beliefs about 

the state of the world as it is (s), including beliefs about the way in which we are act-

ing (π ). In contrast, learning describes optimization of beliefs about the relationships 

between  these variables (A,  B,  C,  D, or E ). The latter vary much more slowly than the 

former and may only be learned when the states have been inferred. We  will return to 

this separation of timescales below when we consider hierarchical generative models.
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The simplest way to choose the right kind of prior is to look up the con-

jugate prior for what ever form the likelihood distribution takes. For the cat-

egorical distributions used  here, a Dirichlet distribution is the appropriate 

choice for beliefs about par ameters (see box 7.2). Having included  these addi-

tional prior beliefs, we can now optimize posterior beliefs about the structure 

of the generative model. This means incorporating  these into the  free energy 

(as we did for states in chapter 4) and finding the  free energy minima.

θ = (A, B,C, D, E)

F = EQ (π ,θ )[F(π ,θ )]+ DKL[Q(θ ) || P(θ )]+ DKL[Q(π ) || P(π )]  
(7.9)

Dirichlet distributions are pa ram e terized by counts (or pseudo- counts) 

that index the number of times a given categorical variable has been seen 

(or, in the case of the priors, as if it had been seen that number of times). 

For the derivation of the update rules for  these par ameters, see appendix B. 

For now, we summarize the update rule and key properties of a Dirichlet 

distribution, focusing on the a and a concentration par ameters associated 

with the prior and posterior over A.

a = a + sτ ⊗ oττ∑
EQ[Aij ]= Aij ≈

aij
a0 j

EQ[lnAij ]= lnAij =ψ (aij ) −ψ (a0 j )

a0 j ! akjk∑  

(7.10)

Box 7.2
Conjugate priors

When setting up a generative model of the form in figure 7.10, it is impor tant to 

carefully select the appropriate distribution for prior beliefs. Typically,  these  will 

be the conjugate prior distribution associated with the likelihood. A conjugate 

prior belief means that, when used to perform Bayesian inference, the posterior 

belief  will be the same type of distribution. For example, using Bayes’ rule:

P(D | s) ∝ P(D) P(s | D)

If P(s | D) is a categorical distribution, when we choose a Dirichlet distribution 

(conjugate to categorical ) for P(D), we can guarantee that P(D | s) is also a Dirich-

let distribution. Put formally:

P(D) = Dir(d)

P(s |D) = Cat(D)
⎫
⎬
⎭
⇒ P(D |s) = Dir(d)
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The first line  here expresses the update from prior to posterior concen-

tration par ameters following a series of observations, with beliefs about the 

states that caused them. The cross in the circle indicates a Kronecker ten-

sor product (or outer product in the case of two vectors),  here giving rise 

to a matrix in which each ele ment is the product of a pair of ele ments in 

sτ and oτ. This update rule may be interpreted simply as a form of activity- 

dependent plasticity. When an outcome is observed in combination with a 

posterior belief that a par tic u lar state caused it, the ele ment of the matrix 

representing the relationship between the two is incremented. The second 

line of the equation highlights the interpretation of the Dirichlet concen-

tration par ameters in terms of counts. For a given state (column), each ele-

ment of a is the number of times the corresponding outcome has been seen. 

Dividing by the sum of the ele ments in the column (total number of obser-

vations or pseudo- observations) gives the probability of each outcome given 

that state. To understand why this (pseudo) counting method makes intui-

tive sense, consider the amateur musician example from the beginning of 

this chapter. If one counts how many times the musician hits the first note 

when she intends to do so (first row and column), how many times she hits 

the second note when she intends to do so (second row and column), and 

so on, and divides  these by the total number of times she intends each note, 

one  will eventually converge to the correct numerical values of the A- matrix 

shown in equation 7.1— namely, that the musician hits all her intended 

notes 70  percent of the time. The counting method has another impor tant 

consequence that we  will return to: The number of counts or pseudo- counts 

preceding an observation tells us how likely we are to update our beliefs on 

making the observation. Imagine flipping a coin five times and getting five 

heads in a row. This might lead us to update our beliefs to  favor the hypothe-

sis that this is an unfair coin. However, if this had been preceded by 100 flips 

with 50 heads and 50 tails, the final five heads would do  little to influence 

our beliefs about  whether this is a fair coin. The third line of equation 7.10 

shows a useful identity associated with Dirichlet distributions: the expected 

log of the random variable is given by the difference in two digamma func-

tions (derivative of a gamma function).

The inferential approach to learning highlights an impor tant difference 

between Active Inference and most other approaches to computational 

neuroscience and machine learning, which incorporate vari ous learning 

rules (e.g., Hebbian rules or error backpropagation) that are considered 

biologically realistic or computationally efficient. In Active Inference, the 
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update rules that govern learning are derived from statistical consider-

ations, yet they turn out to be remarkably similar to biologically motivated 

rules for activity- dependent plasticity (see the above considerations on the 

first line of equation 7.10). This exemplifies one of the appeals of norma-

tive approaches, which start from first princi ples to explain what we know 

about brains and be hav ior— and  things that we did not know.

A further difference between Active Inference and most machine learn-

ing approaches is that learning is naturally described as an active pro cess, in 

which creatures autonomously select the most appropriate data to improve 

their generative models. This becomes evident if one considers that when 

including beliefs about par ameters in the model, the expected  free energy 

acquires an additional term:

G(π ) = DKL[Q( !o |π ) || P( !o |C)]
Risk

" #$$$$ %$$$$
+ EQ ( !s|π )[H[P( !o | !s)]]

Ambiguity
" #$$$ %$$$

+ E !Q ( !o, !s,θ |π )[ lnQ(θ ) − ln P(θ | !o, !s)]

Parameter information gain
" #$$$$$$ %$$$$$$

= −EQ ( !o|π )[DKL[Q( !s |π , !o) ||Q( !s |π )]]
Salience

! "###### $######

− E !Q ( !o, !s|π )[DKL[Q(θ | !o, !s) ||Q(θ )]]

Novelty
! "###### $######

− EQ ( !o|π )[ ln P( !o |C)]
Pragmatic value

" #$$$ %$$$
 

(7.11)

The salience and pragmatic value terms  were already in place in equation 7.4, 

but the novelty term is new. The final equality  here shows an arrangement 

that highlights the relationship between salience and novelty. In short, 

salience is to inference what novelty is to learning. Both are expressions 

of the change in beliefs anticipated once a perceptual experiment (i.e., an 

action in a policy) is performed. As with scientific experiments, the greater 

the change in beliefs following data collection, the better the experiment. 

Returning to the analogy of flipping a coin and accumulating counts, this 

tells us something useful. If we have two coins and can choose to flip  either 

one, we can elicit the greatest change in beliefs by flipping the coin we had 

flipped only five times previously rather than the coin with 100 previous 

flips.  There is greater novelty associated with flipping the former (less famil-

iar) coin. Similarly, if we have confident prior beliefs as if we had observed 

something many times, policies that interrogate  these variables are associ-

ated with less novelty than  those about which we have less confident beliefs.

To illustrate how this works in practice, imagine we have a very myopic 

creature standing on a tiled floor. This creature can only see the color of 
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the tile it is standing on and can only move one tile at a time. For any suit-

ably large landscape with many tiles, it is very computationally expensive 

to represent the color of each tile as a dif fer ent hidden state. However, a 

simpler form of model is available. If we associate hidden states only with 

location, and colors only with outcomes, we can efficiently represent beliefs 

about “what I would see if I went over  there” in the A matrix that generates 

colored tiles from locations. By accumulating Dirichlet par ameters (equation 

7.10), our creature can optimize  these beliefs on the basis of observations. We 

might interpret this as a form of synaptic memory as opposed to the main-

tenance of per sis tent activity in neurons representing beliefs about the color 

of a given tile. Given this sort of generative model, wherein all of the uncer-

tainty is in the par ameters of the likelihood distribution, it is in ter est ing to 

see what happens in the absence of any preferences (i.e., when the novelty 

term of equation 7.11 dominates policy se lection). Figure 7.11 shows a sim-

ulation of a  simple environment comprising 64 black or white tiles. As each 

tile is visited, beliefs about the likelihood of observing black or white in 

that location are updated through accumulation of Dirichlet par ameters. As 

large Dirichlet par ameters preclude large belief updates, the drive to novelty 

resolution given by expected  free energy minimization leads our simulated 

creature to avoid any previously visited locations.

The same princi ples could be applied to a range of other paradigms (e.g., 

if we reinterpret the path taken by our creature as a saccadic scan path, 

this could be applied to active visual sampling). In the domain of active 

vision, this has been used to simulate the kinds of visual search be hav ior 

induced by target cancellation tasks (Parr and Friston 2017a). Subsequently, 

evidence for the short- term plasticity required in accumulating Dirichlet 

par ameters in this setting has been demonstrated (Parr, Mirza et al. 2019).

Just as we can extend ideas about inference to learning, it is pos si ble to 

go (at least) one step further and think about structure learning: the pro cess 

of not just optimizing the par ameters in the model but selecting between 

dif fer ent models with more or fewer par ameters in play. Box 7.3 sets out a 

way of  doing this that involves efficient post hoc comparisons of alterna-

tive hy po thet i cal models. This has been used as a meta phor for sleep (Fris-

ton, Lin et al. 2017) and resting spontaneous activity (Pezzulo, Zorzi, and 

Corbetta 2020), where no new data are collected but the structure of the 

model may still be refined and simplified.
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Path Likelihood

Ti
m

e

Figure 7.11
Active learning is demonstrated by a synthetic creature exploring a  simple world of 

black and white tiles (Bruineberg et al. 2018, Kaplan and Friston 2018). Left: Path 

taken by the creature, showing which tiles are white and which are black (dots cor-

respond to visited locations). Right: A matrix of the creature and the beliefs (in terms 

of normalized Dirichlet counts) the creature has about what it would see on  going 

to dif fer ent locations. Cells in the A matrix are white (or black) if the creature has a 

strong belief that the corresponding tile is white (or black); they are grey if the crea-

ture is uncertain about color. Crucially,  these beliefs influence which path it takes via 

the novelty term of the expected  free energy.  Those locations about which it has con-

fident beliefs afford relatively  little opportunity for uncertainty resolution, so it does 

not revisit them. In other words, the phenomenon of “inhibition of return” (Posner 

et al. 1985) emerges naturally from the minimization of expected  free energy.

7.6 Hierarchical or Deep Inference

In the previous section, we saw one method for hierarchical extension of 

the original generative model based on defining priors over the par ameters 

of the generative model. Figure 7.12 shows a second form of hierarchy that 

speaks to the nesting of temporal scales. This generative model for hier-

archical or deep inference can be conceived of as a hierarchical extension 
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of the shallow model shown in figure 7.3: it includes a series of POMDP 

models at the lower level that are the same as in Figure 7.3 (one example 

is outlined with the dashed box), contextualized by a higher- level POMDP.

Importantly, this generative model includes variables that evolve at dif-

fer ent timescales: slower for higher levels and faster for lower levels (Friston 

2008; Friston, Rosch et al. 2017; Pezzulo, Rigoli, and Friston 2018). This 

becomes evident if one considers that the POMDP models at level 1 evolve 

over three time steps, but each of  these short trajectories of states and out-

comes depends on a single state at the higher level (level 2) that persists 

Box 7.3
Structure learning and model reduction

The discussion in section 7.4 deals with an impor tant, but  limited, form of 

(parametric) learning. The next level of sophistication—in learning about the 

structure of the world— goes beyond the optimization of model par ameters 

and asks  whether we should expand or prune the model structure. This can 

be cast as a question of model comparison (Friston, Lin et al. 2017). In other 

words, would my  free energy increase or decrease if I  were to (for example) 

eliminate ele ments of a likelihood matrix? By comparing models with and 

without  these ele ments, we can answer this question. However, it may be very 

costly to have to explic itly invert multiple models. Fortunately, an efficient 

method for  doing this— known as Bayesian model reduction (Friston, Litvak 

et al. 2016; Friston, Parr, and Zeidman 2018)—is available and only requires 

inversion of a single full model. In a general setting, comparison between a 

full model and one with alternative priors (indicated by ~) can be achieved 

through the following formulae:

ΔF = F[ !P(θ )]− F[P(θ )]= lnEQ (θ )
P(θ )
!P(θ )

⎡

⎣
⎢

⎤

⎦
⎥

!Q(θ ) ∝ exp lnQ(θ ) + ln !P(θ ) − ln P(θ ) + ΔF( )
For the Dirichlet priors used in section 7.5, this takes the form (where B is 

the multivariate beta function):

ΔF = lnΒ( !d) − lnΒ(d) + lnΒ(d) − lnΒ( !d)
!d = d + !d − d

This form of model reduction may be impor tant in understanding offline 

model optimization, of the sort that may occur during sleep. We  will briefly 

revisit Bayesian model reduction in chapter 8, when considering the optimiza-

tion of hierarchical models with both discrete and continuous components.
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throughout the entire trajectory at the lower level. In other words, for  every 

time step from the perspective of the higher level,  there are multiple ( here, 

three) time steps for the lower level.

To gain some intuition for this separation of timescales— which under-

writes deep temporal inference—it is worth thinking about a  simple exam-

ple of hierarchy in everyday life: reading. We draw inferences about words 

that combine to form sentences. Sentences combine to form paragraphs, 

pages, books, libraries, and so on. If we imagine that each state at the lower 

level of figure 7.12 is a word, each state at the higher level can be thought 

of as a sentence. Crucially, the duration of the sentence transcends that of 

any one word in the sequence.

The reading example is illustrated in more detail in figure 7.13, which is 

based on the example from Friston, Rosch et al. (2017), to which we refer 
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Figure 7.12
We can extend the (shallow) generative model set out in figure 7.3 so that it affords 

hierarchical or deep inference, which evolves over multiple timescales. The full gen-

erative model includes a slowly changing context (at level 2) that generates a series 

of short trajectories at the lower, faster level 1. The form of the POMDP is the same at 

the higher level as at the lower level (one of the POMDPs is outlined with the dashed 

box). The only difference is that it is stretched out in time (horizontally) and that the 

outcomes it generates are not directly observed. Instead, they form empirical priors 

for the lower level, which generates observable outcomes.
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for more details. The model is structured as in figure 7.12 and represents 

sentences (at the higher level) and words (at the lower level) drawn from 

a very  simple language. This language comprises three pos si ble words ( flee, 

feed, wait) that may be arranged into six pos si ble four- word sentences. If the 

sentence is “flee, wait, feed, wait,” the higher level predicts the word flee for 

the first of the lower- level POMDPs, wait for the second, and so on. At the 

lower level, we start with an empirical prior (D) based on the higher level, 

which tells us which words are most plausible. For example, if we started 

with a uniform distribution over the sentences shown in the upper panel of 

figure 7.13, we see that the first word is wait in two- thirds of the sentences 

and flee in the other third. This means that at the first time step of the first 

low- level POMDP, our D- vector should ascribe  these probabilities to  these 

words.

The words at the lower level then generate observations, visual inputs 

based on which part of the word is currently foveated. Much as in the 

example of figure 7.9, the POMDP allows for se lection of dif fer ent foveal 

targets to accumulate evidence for or against each hy po thet i cal word. This 

appeals to the same expected  free energy minimizing pro cesses outlined 

above; therefore, we  will not detail the specific foveations made  here, but 

we note that with each time step at the lower level,  there is an increase in 

confidence about the word in play. In the sequence shown in figure 7.13, 

we see that evidence is accumulated for the word flee at the lower level over 

the first few time steps (over the fast scale, τ (1)). This inference is propa-

gated back up to the higher level, where it provides evidence for the first 

and fourth sentences (each of which start with this word). Over subsequent 

time steps the evidence accumulated at the lower level is consistent with 

both sentences. At the fourth step (at the slow scale, τ (2)), we would predict 

wait  under the first sentence and flee  under the second. On inferring wait 

at the fast timescale, the first sentence is inferred at the slow scale. At the 

final step, the simulation selects the correct sentence and is rewarded with 

correct feedback. The resulting belief updating is seen in the LFP plot in the 

lower part of figure 7.12.

Deep temporal models of this sort have been used to simulate reading 

(Friston, Rosch et al. 2017), delay- period working memory tasks (Parr and 

Friston 2017c), and computation of empirical priors for visual inference (Parr, 

Benrimoh et al. 2018). In addition, they have been leveraged in theoretical 

accounts of motivation and control (Pezzulo, Rigoli, and Friston 2018). In 
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princi ple,  these models can be extended to an arbitrary number of levels, 

accounting for a deeply structured world with dynamics that play out over 

many dif fer ent temporal scales.

We can draw an in ter est ing parallel between hierarchical models of 

the sort in figures 7.12 and 7.13 and learning models of the sort in fig-

ure 7.10. Learning models can be considered hierarchical generative mod-

els, which highlight a separation of timescales between faster inferential 

dynamics (updates of beliefs about states) and slower learning dynamics 

(updates of beliefs about par ameters). The models shown in figures 7.10 

and 7.12 may be also combined to arbitrary levels of complexity, wherein 
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“feed”
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“flee, wait,
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wait,

wait,
wait,

“wait, flee,
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feed”
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Figure 7.13
Belief updating occurs over multiple timescales by inverting a simulated hierarchical 

inference model. This relies on a generative model with a separation of timescales 

(shown as a slow timescale— τ    (2)— and a fast timescale— τ (1)). Belief updating at the 

higher level (s(2) ), representing sentences, is slower than at the lower level (s(1)), rep-

resenting words. Lower panel: LFPs, i.e., the rate of change of the log expectations— 

which is proportional to the prediction errors (ε ) shown in previous figures.
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the relationships between variables on dif fer ent levels may themselves be 

learned. This permits designing increasingly sophisticated generative mod-

els that address systems- level cognitive and neurobiological questions.

7.7 Summary

In this chapter, we saw some of the ways that discrete- time generative models 

may be constructed to address a range of cognitive and neurobiological prob-

lems, such as perceptual inference, decision- making and planning, balancing 

exploration and exploitation, parametric and structure learning, and novelty 

seeking. This is far from an exhaustive summary of applications of discrete 

models in Active Inference, but it serves to illustrate the key princi ples of 

this sort of modeling. The models outlined above may be combined hierar-

chically, with added priors over par ameters, and with context- sensitive pri-

ors for policies or preferences. Importantly, inference using both  simple and 

more complex generative models can always proceed through  free energy 

minimization, which illustrates the generality of the approach. The fact that 

dif fer ent aspects of Active Inference become apparent  under distinct genera-

tive models (e.g., novelty seeking with priors over model par ameters) opens 

up the possibility of exploring an open- ended set of cognitive and biological 

prob lems by designing the appropriate generative models.
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Every thing flows, nothing stands still.

— Heraclitus, 501 BC

8.1 Introduction

This chapter complements chapter 7 by continuing our discussion of how to 

build a generative model. Our focus  here is on continuous state- space mod-

els, which are well suited for modeling the physical fluctuations impinging 

on sensory receptors and for the continuous motion of the effectors (e.g., 

muscles) we use to change the world around us.  There are many applica-

tions of  these models. In this chapter, we set out the princi ples  behind 

their use. We highlight the kinds of model used in motor control and the 

dynamical systems that play a role in such models, and we touch on the 

concept of generalized synchrony. Fi nally, we discuss the reconciliation of 

discrete and continuous generative models.

8.2 Movement Control

As we saw in chapter 4, the generative model that underwrites active infer-

ence in continuous time may be written as a pair of stochastic equations 

that determine how states ( x ) generate data ( y) and how states evolve over 

time depending on some static variable (v):

y = g(x) +ω y

x
. = f (x,v) +ω x

 (8.1)

 These equations and the precision associated with the fluctuations (ω ) deter-

mine the model used to draw inferences about the  causes of sensations. 

8 Active Inference in Continuous Time
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Note that action is absent from equation 8.1. This is  because (as outlined in 

chapter 6), action is part of the generative pro cess, not the generative model. 

The generative model only deals with  those variables that are directly influ-

enced by states external to a Markov blanket. If we  were to write down the 

dynamics of the real world (i.e., the generative pro cess), we would have to 

include action (u):

y = g(x) +ω y

x
.
= f(x,u) +ω x

 (8.2)

Note that the functions g and f (and the precisions of ω) used to define the 

generative model (equation 8.1) are not necessarily the same as  those used 

to define the generative pro cess (equation 8.2). As we saw in chapters 2–4, 

actions change sensory data such that  free energy is minimized. This means 

we do not need to explic itly write down the dynamics of action in the gen-

erative model— they emerge from the choices made for the terms in equa-

tion 8.1. To gain some intuition for this, we start with a very  simple sort of 

generative model:

g( x )   =  x
f  ( x, v)   =  v − x 

(8.3)

Equation 8.3 says that the hidden state represents the expected value for 

the data and that it has dynamics consistent with a  simple (i.e., point) 

attractor. By attractor, we mean that when x is less than v, the expected rate 

of change of x is positive, and vice versa. This means that x  will always flow 

 toward v (i.e., v is an attracting or fixed point). To generate data, we define a 

 simple generative pro cess:

g( x )   =  x
f ( x, u)   =  u 

(8.4)

On minimizing  free energy, this means that action  will change to fulfill 

the predictions of equation 8.3. If μ is the expected value of x, this means 

the action that minimizes the difference between the predicted data ( g( μ)) 

and the observed data ( y) is to set u equal to v − μ. This is an expression of 

the “equilibrium point hypothesis” (Feldman and Levin 2009), which treats 

motor control as enacted by reflex arcs that simply draw limbs  toward equi-

librium points set by descending motor signals.  Under Active Inference, 

 these signals are predictions— specifically, proprioceptive predictions about, 

for example, the expected position of limbs or eyes (Adams, Shipp, and 
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Friston 2013). Therefore, movement control results from the fulfillment of 

(proprioceptive) predictions by action, as schematically illustrated in fig-

ure 8.1. Note that this scheme does not require specification of “inverse 

models” (i.e., mappings from desired consequences to the motor com-

mands to reach them) that are widely used in other formulations of motor 

control (Wolpert and Kawato 1998).

The expression in equation 8.3 is the simplest sort of attractor system 

we might employ in a generative model. However, it is too  simple in many 

settings, where more realistic Newtonian dynamics apply. A more sophis-

ticated model recognizes that forces— generated by muscles— change the 

velocity (i.e., induce an acceleration), not the position. Equation 8.5 sets 

this out explic itly with x1 as the position and x2 as the velocity:

f (x,v) =
x2

κ
m (v − x1)

⎡

⎣
⎢

⎤

⎦
⎥  (8.5)

This expression is equivalent to the dynamics of a spring obeying Hooke’s 

law. The rate of change of the position (first ele ment) is simply the velocity. 

The rate of change of the velocity (second ele ment) is proportional to the 

distance between the current position and the point v, with the constant 

of proportionality: a ratio between the mass of the object (m) and a (spring) 

constant (κ ). Multiplying both sides by the mass, we have the force1 gener-

ated by a spring (κ (v − x1)) attached to the points v and x1 equal to the mass 

multiplied by the rate of change of the velocity. This is just Newton’s second 

law. In other words, we can write down a generative model that predicts the 

dynamics that would unfold if  there  were a spring drawing a limb to a desired 

location. By predicting the (proprioceptive) data consequent on this Newto-

nian mechanics, we can enact the movement that fulfills  these predictions.

8.3 Dynamical Systems

As outlined in section 8.2, continuous- time formulations of Active Infer-

ence are well suited to characterization of movements. More generally, 

they are appropriate in specifying generative models of nonlinear dynami-

cal systems wherein discretization of time and space is inefficient. The 

simplest form of dynamical system is the attractor of equation 8.3, but 

much richer be hav ior can be developed from more complex systems. In 

the  limited space of this book, we cannot do justice to the large body of 
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Figure 8.1
Spinal reflexes, illustrating the distinction between a generative pro cess (out  there 

in the world) and a generative model in the setting of action generation. The model 

assumes that the position ( x ) of a limb (or hand or other body part) is drawn  toward 

some point (v). The dashed arrow in the upper plot shows this belief. Beliefs about 

x( μx ) may be substituted in place of x and used to update beliefs about its rate of 

change. The resulting μx is then used to predict sensory data ( y) via the g function in 

the generative model. Sensory data are actually generated by the generative pro cess 

via the function g, which takes the “real” value of x as its argument. The error (εy) 

then drives changes in action (u) such that the error is resolved. This resolution hap-

pens through the generative model, as the action determines the rate of change of x 

via f. This  causes x to move to the location in space that generates data y consistent 

with the prediction (  g(  μx )), setting εy and therefore the rate of change of a to zero.
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Box 8.1
Precision, attention, and sensory attenuation

We addressed the importance of precision in chapter 7, but it is worth recap-

ping its role in continuous- time systems. In many ways, this concept is more 

naturally addressed in this setting, as the Π variable appears as a direct con-

sequence of the Laplace approximation. This acts directly as a multiplicative 

gain in the inferential dynamics (see figure  8.1), with dif fer ent precisions 

weighting alternative influences over belief updating.

The interpretation of precision as a synaptic gain connects it to several 

impor tant aspects of neurobiology. From an empirical point of view, higher 

precision implies more vigorous belief updating of the sort that might be mea-

sured in electrophysiological research as a large amplitude- evoked response 

with an early peak or in single- cell recordings as a multiplicative effect on 

neuronal firing rates in response to a stimulus placed in that cell’s receptive 

field.  These findings are often associated with attentional pro cessing, where 

one sensory channel (or subset of channels) is favored above  others. From 

the perspective of active inference, precision and attention are synonyms. The 

former has been used to reproduce a range of attentional phenomena in silico, 

including the Posner paradigm (Feldman and Friston 2010). Specifically, using 

a cue to predict the precision of sensory input from one of two locations 

reproduces the empirical finding that responses to stimuli in the cued loca-

tion are faster than  those appearing in the alternative location.

A second impor tant aspect of precision control is its role in movement 

generation. To understand this, it is worth thinking about what happens in 

the absence of this control. Imagine, first, that sensory data are predicted with 

high precision. The messages from  these data are therefore afforded high syn-

aptic gain and lead to veracious inferences about the position of some body 

part. The prob lem with this is the equivalence between motor commands and 

predictions  under Active Inference. An accurate belief that “I am not mov-

ing” cannot be used to predict the sensory consequences of movement, vital 

for the initiation of that movement. With high precision sensory input, the 

belief that “I am moving” is immediately corrected in the face of evidence to 

the contrary; hence no movement is executed. This tells us something impor-

tant: In order to generate movement, we must be able to ignore the sensory 

consequences of that movement to form the (initially false) belief that “I am 

moving.” Once this belief is established, the proprioceptive (and other sen-

sory) consequences of that movement may be predicted and enacted through 

the mechanisms outlined in figure 8.1. This pro cess of ignoring evidence to 

the contrary is known as “sensory attenuation” and represents the decrease in 

precision required for a movement to take place (Brown, Adams et al. 2013; 

Pezzulo 2013; Seth 2013; Pezzulo, Rigoli, and Friston 2015; Seth and Friston 
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2016; Allen et al. 2019). Clearly it is useful between movements to restore this 

precision, to draw the appropriate inferences from sensory input. This implies 

a cyclical pro cess of attenuating and moving (e.g., the cyclical suppression 

of visual input during saccades, then a suppression of saccades). Predicating 

movement on the suspension of attention has close relationships with an ideo-

motor theory that originated in the nineteenth  century to explain movements 

induced  under hypnosis.

Box 8.1 (continued)

work developing models with more complex dynamical systems (but see 

 table 8.1 for some of the key advances). Instead, we focus on a few of the 

princi ples needed to understand  these systems. In this section, we briefly 

overview two dynamical systems used in formulating generative models 

of this sort: Lotka- Volterra dynamics and Lorenz systems. The former may 

be used in characterizations of systems with a sequential aspect to their 

dynamics, while the latter represent chaotic systems.

Lotka- Volterra dynamics inherit from characterizations of predator- prey 

dynamics in ecol ogy. While they have since found application in numerous 

disciplines, predator- prey systems remain a useful example to provide some 

intuition about their workings. When the predator population is small, the 

prey may increase their numbers to become a relatively large population. 

This provides additional food for the predators, whose population size then 

grows. Increased predation  causes a decrease in the number of prey species 

and therefore a decrease in the number of predators. From  here, the cycle 

continues. This gives an oscillatory pattern whereby the prey population 

size peaks, then the predators’, then the preys’ again, and so on. By gener-

alizing this to more than two populations (e.g., carnivore, herbivore, and 

plant populations), we can generate a sequence of peaks. Figure 8.2 illus-

trates generalized Lotka- Volterra dynamics with three populations, which 

obey dynamics of the following form:

f  ( x, v)   =  x ° (v + Ax ) (8.6)

 Here, x is a vector as before. The ° symbol means an elementwise product. 

Intrinsic birth and death rates are given by the vector v, and A is a matrix 

whose ele ments are positive if the species indexed by the column prey on 

 those indexed by the row and negative if the relationship is inverted.
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Generalized Lotka-Volterra dynamics
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Figure 8.2
Generalized sequential dynamics emerging from Lotka- Volterra systems provide an 

impor tant point of connection with the discrete sequential dynamics assumed in 

chapter 7.  These dynamics can be applied to a range of systems but are framed  here 

in terms of predator- prey relationships for ease of interpretation. Top: Population 

changes over time. The population size is expressed in terms of arbitrary units (a.u.). 

The peaks are labeled on the basis of which species has the greatest population at 

that point. The repeated pattern of p, h, c can be seen as a sequence of three (not 

necessarily evenly spaced) discrete time steps. Bottom: Trajectories emphasizing the 

(approximately) periodic pattern that each follows.

Figure 8.2 makes clear that having a generative model that incorporates 

Lotka- Volterra dynamics allows for temporal sequencing (Huerta and Ra bino-

vich 2004)— depending on the current highest peak. Each line can be thought 

of as representing a hidden state, in place of a species.  Figure 8.3 highlights 

two impor tant examples in which  these dynamics have been exploited to 

generate be hav ior One is a hierarchical model that uses the sequential 

dynamics afforded by a Lotka- Volterra system to time the response of an 

eye blink relative to a conditioned stimulus (Friston and Herreros 2016). The 
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Figure 8.3
Two applications of generalized sequential Lotka- Volterra dynamics in Active Infer-

ence. Left: Eyeblink conditioning used to empirically investigate cerebellar function 

(Friston and Herreros 2016). Starting at the highest level of the column, the expected 

states show the same kind of sequential pattern as in figure 8.2. This passes down 

to the next level to predict sequential hidden  causes; the vari ous peaks  here predict 

states at the next level down, where the first peak is the conditioned stimulus (CS) 

and the second is the unconditioned stimulus (US). Fi nally, the predicted US induces 

action— a blink. Right: Sequential peaks using an attracting point as in equation 8.5 but 

selecting the specific attractor on the basis of which population of a Lotka- Volterra 

system is currently highest; this leads to a sequential visiting of each point, giving 

rise to a form of handwriting (Friston, Mattout, and Kilner 2011).
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paradigm is based on  those used in the investigation of cerebellar function. 

An unconditioned stimulus (a puff of air directed  toward an animal’s eye) 

elicits a response (blinking). A conditioned stimulus (an auditory tone) may 

be played prior to the unconditioned stimulus on multiple occasions. By 

learning (see box 8.2) the number of peaks in the Lotka- Volterra dynamics 

that separate the conditioned stimulus from the unconditioned stimulus, 

the animal learns to preempt the air puff and time the appropriate blink. 

This is a form of temporal learning, since the number of peaks provides an 

implicit estimate of the length of the temporal interval from the condi-

tioned to the unconditioned stimuli. In the second example in figure 8.3, 

each sequential peak is associated with an alternative attracting point that 

drives movements to a series of attracting points arranged to suggest hand-

writing (Friston, Mattout, and Kilner 2011). As the two examples illustrate, 

Box 8.2
Learning in continuous models

As discussed in chapter 7, learning is the pro cess of optimizing beliefs about 

the par ameters (θ ) of a generative model. In the continuous- time domain, 

this means accumulating evidence over time. This works as if we treat data in 

a series of infinitesimally small time- intervals as obeying i.i.d. (in de pen dent 

and identically distributed) assumptions and formulate a generative model 

that generates observations from (time- invariant) par ameters:

ln p( !y,θ ) = ln p(θ ) + ln p(y(t )∫ |θ )dt

≈ ln p(θ ) − F[y(t )∫ |θ ]dt

This may be used to formulate a functional (S ) that plays the role of a  free 

energy for par ameters using the time integral of the  free energy conditioned 

on par ameters. Using a Laplace approximation, we get the following, wherein 

α acts to accumulate  free energy gradients (i.e., evidence gradients):

S(θ ) = Eq(θ )[ lnq(θ ) + F[y(t ) |θ ]∫ dt − ln p(θ )]

≈ F[y(t ) | µθ ]∫ dt − ln p(µθ )

µ. θ = ∂µθ S(µθ )

= ∂µθ ln p(µθ ) − ∂µθ F[y(t ) | µθ ]∫ dt

= ∂µθ ln p(µθ )−α

α. = ∂µθ F[y(t ) |µθ ]
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generalized Lotka- Volterra systems afford useful models of sequential dynam-

ics using a continuous dynamical system.

The POMDP formulation of chapter 7 has largely superseded the use of 

generalized Lotka- Volterra systems in Active Inference applications. How-

ever, it is useful to bear this kind of dynamic in mind as a plausible con-

tinuous system that might underwrite the discrete sequential dynamics of 

chapter 7. In addition, Lotka- Volterra systems make explicit the distinction 

between repre sen ta tions of sequences involved in temporally deep planning 

and repre sen ta tions of rates of change in generalized coordinates of motion 

(see chapter 4). Each has its place but deals with dif fer ent sorts of prob lems.

The second sort of dynamical system that has found widespread applica-

tion in active inference research is the Lorenz system:

x
. =

σ (x2 − x1)

x1(ρ − x3) − x2

x1x2 − βx3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

(8.7)

The par ameters are known as the Prandtl number (σ ), the Rayleigh num-

ber ( ρ), and a constant ( β ) that relates to the physics of the system. Depend-

ing on the values  these take, the system may behave in very dif fer ent ways. 

Lorenz attractors  were initially formulated to account for atmospheric 

convection dynamics. Their itinerant (wandering) be hav ior has prompted 

their use in generative models to simulate challenging inference prob lems. 

An impor tant example of this is in the simulation of birdsong, which we 

unpack in the next section.  These systems have also been used to simu-

late  simple physical systems and to investigate the conditions  under which 

their be hav ior starts to appear sentient. Figure 8.4 shows how the Lorenz 

system behaves  under example pa ram e ter settings.

8.4 Generalized Synchrony

As mentioned above, a key example application of continuous state- space 

models is in a series of studies based on synthetic birdsong (Friston and 

Frith 2015b). An impor tant aspect of  these studies looks at communication 

and multi- agent inference prob lems. The idea  here rests on the capacity 

of a creature to synchronize its internal states with something out  there 

in the world (i.e., inference). When what is out  there is another creature 

with a similar model, this synchronization means the internal states of one 
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creature should come to resemble the internal states of the other: a primi-

tive kind of theory of mind.

Figure 8.5 shows the kind of generative model used to simulate song-

birds. In this hierarchical model, high- level states (level 2) evolve accord-

ing to a slow Lorenz system. One dimension of this system is then used to 

pa ram e terize the Rayleigh number of a faster Lorenz system at the lower 

level (level 1). The lower- level variables then map to sensory (sonographic) 

data. Analogous to figure 8.1, the generative pro cess additionally includes 

action;  here, instead of moving a limb, actions influence the larynx, such 

that the sonographic data may be influenced by the bird. As before, action 

is generated to resolve prediction error. This means that if a bird hears the 

song it is predicting,  there is no need to generate it itself. However, if it 

predicts a song that is not heard, it must start singing to resolve any error.
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Figure 8.4
Be hav ior of a Lorenz system attractor (using the same format as figure 8.2), showing 

how this 3- dimensional system evolves. Characteristically, it appears chaotic and 

unpredictable, spending some of its time orbiting one part of space before switch-

ing to another orbit. This itinerancy and apparent autonomy make this in ter est ing 

system well suited to inclusion in models of biological phenomena.
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This dynamic becomes more in ter est ing when  there are two birds in play, 

with similarly structured generative models. As long as one bird is singing, 

the other does not need to, as  there is no error to resolve. However, if one 

bird stops singing, the other needs to continue the same song. This leads to 

a form of turn taking, sometimes phrased as “singing from the same hymn 

sheet,” with each bird contributing sections of the same song. What leads 

to this turn taking? Why  doesn’t one bird continue singing the  whole song 

to its conspecific? The answer relates to the issue of sensory attenuation (see 

box 8.1), as acting to generate birdsong requires a reduction in the preci-

sion of predictions about the consequences of action. Just as in saccadic eye 

movements, this implies alternation between attention to sensory (visual or 

auditory) data and attenuation during (saccadic or vocal) action designed 

to change  those data. When  there are two agents involved, this leads to an 
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Figure 8.5
Synchronization and communication. Left: Generative model underwriting the bird-

song simulations described in the main text. This is a hierarchical model, with Lorenz 

attractors at each level. Right: Synchronization manifolds of expectations at the sec-

ond level for two birds before and  after they have learned about one another.  After 

learning the par ameters of each other’s generative models, the two bird’s joint trajec-

tory is confined to an (almost) 1- dimensional subspace, indicating synchronization.
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alternation between listening to the other and singing— a  simple form of 

conversation.

For this synthetic conversation to work, it is essential that the two birds 

synchronize with one another and know where they are in the song (or 

conversational trajectory). This implies that the inferences about hidden 

states in the generative model should be aligned between the birds. On 

the upper right of figure 8.5, we show a synchronization manifold of two 

birds who have not yet optimized their generative models in relation to one 

another; this plots a trajectory of the beliefs each bird has about the higher- 

level hidden states. Synchronization implies that when one bird infers a 

specific hidden state value, the other bird should infer the same; there-

fore, we would expect the trajectory to stay fixed to the x   =  y line (tech-

nically called identical synchronization of chaos). Fluctuations around this 

line imply imperfect synchronization, as this plot shows.  After exposure to 

one another and learning the par ameters of each other’s generative models 

(see box 8.2), the synchronization is nearly perfect (lower- right plot). The 

implication is that each bird has learned about the other and is able to infer 

what is  going on in the other’s head. In short, they have learned to share 

the same narrative and “sing from the same hymn sheet.”

A more general form of synchronization does not require synchronization 

along the x   =  y line. In generalized synchronization, the joint be hav ior occu-

pies a lower, 1- dimensional space than the higher, 2- dimensional space that 

could be occupied by this be hav ior. However, this low- dimensional space 

(the synchronization manifold) may be curved or have some other shape; 

this is analogous to the 2- dimensional space we occupy on the surface of 

the planet, despite the surface being curved into a 3- dimensional sphere. In 

addition to its central role in social be hav ior, generalized synchronization— 

occupancy of a low- dimensional region of a high- dimensional joint space—

is very impor tant in characterizations of biological systems as engaging in 

inference (generalized synchrony between internal and external states). 

While we do not have the space to unpack this extensive subject  here, the 

inferential perspective speaks to the failure of generalized synchrony associ-

ated with neuropsychiatric syndromes like autism. This kind of synchrony 

is impor tant not only in continuous- time models but also in POMDP 

models of linguistic communication between multiple agents (Friston, Parr 

et al. 2020).

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



166 Chapter 8

8.5 Hybrid (Discrete and Continuous) Models

As we have seen in this and the previous chapter, discrete and continuous 

models both have impor tant applications in Active Inference. While many 

settings call for one or the other, a more holistic perspective acknowledges 

that both are likely in play. This means we need a way to combine  these 

generative models so that a single model includes both continuous and 

discrete variables (Friston, Parr, and de Vries 2017). Such hybrid or mixed 

models allow inferences about sequential action plans and translations of 

 these decisions into movements through a continuous model. Figure 8.6 

shows the form of  these models, with a POMDP at the higher level, behav-

ing as described in chapter 7, which generates a continuous model of the 
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Figure 8.6
Mixed generative models in the form of a hierarchical model much like that in fig-

ure 7.12. However,  there is an impor tant difference between the form of the model 

at the higher level and that at the lower level. While the lower- level model (one 

example is highlighted by the dashed box) is the same form as the other models 

considered in this chapter— i.e., it is framed in terms of continuous states and con-

tinuous time and uses generalized coordinates of motion— the higher- level model is 

a POMDP model of the sort we saw throughout chapter 7— i.e., it is framed in terms 

of discrete states and times. Effectively, this means we can select (at regular time 

intervals) between alternative segments of a continuous trajectory.
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sort addressed in this chapter at each discrete time step. This decomposes 

continuous time into a discrete sequence of short continuous trajectories.

To translate from the outcomes of the discrete level to the continuous 

level, we need to associate each alternative outcome with a point in some 

continuous space. To develop intuition for this idea, we consider the exam-

ple of a delay- period oculomotor task— often used in primate research; see 

figure 8.7. This task involves three stages. First, a target appears in one of (for 

example) four pos si ble locations, while a monkey maintains fixation on a 

central fixation cross. Next, the target dis appears and must be remembered 

during a delay period. Fi nally, a signal is given for the monkey to make 

a saccade, at which point it must look at the location where the original 

target appeared. To complete this task, the monkey must be able to draw 

inferences about sequences (which stage of the task is currently in play) and 

to infer which of four locations to aim for.  These are categorical inference 

prob lems suited to a POMDP formulation. However, once the appropriate 

location has been selected, the monkey must perform the eye movement 

that brings its fovea to the (continuous) coordinates of the target location.

Figure 8.7 illustrates the functioning of a mixed generative model that 

solves this prob lem. In the top panel, the model’s higher level makes cate-

gorical decisions: it computes the posterior beliefs about four discrete target 

locations at four time periods. In the  middle and bottom plots, the model’s 

lower level computes continuous behavioral trajectories (eye movements) 

resulting from discrete inferences at the higher level.

Transforming decisions about discrete target locations into continuous 

eye movements requires each discrete target location (o) to be associated 

with a distribution over continuous hidden  causes (v), which identifies the 

target coordinates. The prior over target coordinates can then be computed 

by taking the Bayesian model average over  these locations, weighted by the 

inferences at the POMDP level:

P !v |oτ( ) = N ( !ηoτ
, !Πv )

P( !v) ≈ N ( !η, !Πv )

!η = EQ (oτ ) !η[ ] = oτ i !η  

(8.8)

To infer which discrete target best explains continuous data, we need to 

be able to compute the evidence associated with each hy po thet i cal target— 

which is a function of observed continuous data. This exemplifies the fact 

that mixed models require reciprocal interactions between higher and lower 

hierarchical levels. As we see in figure 8.7, this facilitates the formation of 
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Figure 8.7
Transforming decisions into movement using mixed or hybrid models (Parr and Fris-

ton 2019b). This  simple example uses the oculomotor delay- period paradigm out-

lined in the main text. Top: Neuronal firing rates representing posterior beliefs about 

the target location. The target may be in four dif fer ent locations, and  there are four 

time steps in this synthetic experiment, so  there are 16 neural populations represent-

ing each of  these combinations. The lines corresponding to the final inferred state of 

affairs are annotated explic itly. Note the belief updating at the first time step (from 0 

to 250 ms), when the target initially appears, and at the third time step (from 500 to 

750 ms), when the agent observes itself performing a saccade to that location.  Middle: 

Be hav ior (i.e., a saccade from the center location to the target location). During the 

first quarter of the experiment, the target is vis i ble in the upper location. Next,  there 

is a delay period, during which fixation is maintained. Then a saccade is performed 

to the correct location. Fi nally,  there is a period during which fixation is maintained 

at the target location. Bottom: Continuous behavioral trajectories that result from the 

discrete inferences of the top plot.
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beliefs about where to perform saccades and the execution of  those saccades 

at the appropriate times. At the first discrete time step (up to 250 ms on the 

continuous scale), the monkey is able to infer with some confidence that 

its eyes are centered on the fixation cross during the first time step, that it 

 will maintain this fixation at the second time step (up to 500 ms), and that 

the most likely course of action  after this  will result in foveating the upper 

location. This can be seen in the discrete firing rates (top plot). This trans-

lates into the continuous be hav ior which, when implemented, increases the 

confidence in beliefs about the discrete states (note the increase in probabil-

ity for an upward saccade at the third time step once the continuous data 

become available between 500 and 750 ms). This  simple example, based on 

experimental cognitive research, illustrates the basic princi ples of translation 

between discrete action plans and their continuous implementation.

8.6 Summary

In this chapter, we have overviewed the applications of continuous- time 

generative models  under Active Inference. This is a huge topic, and much 

has been left out (see  table  8.1 for further reading). However, the broad 

Box 8.3
Mixture models and clustering

The issue of combining categorical and continuous generative models outside 

of Active Inference has primarily been framed through the lens of clustering. 

 Here, the aim is to assign each (continuous) data point to a (discrete) cluster. 

A range of algorithms have been employed to solve this prob lem, but most of 

them implicitly rely on a generative model similar to that used  here. This is a 

mixture of Gaussians (aka a Gaussian mixture model):

P( !y, !s,D,η,Π) = P(D)P(η)P(Π) P(si |D)P(yi |si ,η,Π)
i
∏

P(D) = Dir(d)

P(si |D) = Cat(D)

P(yi |si,η,Π) = N (ηsi
,Πsi

)

The prob lem in clustering approaches is to infer the mean and precision 

(η and Π, respectively) of each cluster and the posterior probability that each 

data- point ( yi) belongs to a given cluster P(si | yi). For our purposes (as described 

in section 8.5), we assume precise (delta- function) priors for η and Π and cal-

culate Q(si) ≈ P(si | yi) via Bayesian model reduction (see box 7.3).
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 Table 8.1
Key advances in continuous- time models

Application Sources Notes

Synthetic 
birdsong

Friston and Frith 2015a
Friston and Frith 2015b
Isomura, Parr, and 
Friston 2019

This series of papers deals with 
communication and the interaction 
between synthetic agents, a simu-
lated pair (or group) of songbirds 
singing to one another. The studies 
unpack phenomena from general-
ized synchrony to perceptual infer-
ence to sensory attenuation.

Oculomotor 
delays

Perrinet, Adams, and 
Friston 2014

By taking advantage of beliefs 
about the near past and  future 
implicit in models formulated in 
generalized coordinates of motion, 
it is pos si ble to account for sensori-
motor delays through projections  
a short way into the  future or past.

Conditioned 
reflexes

Friston and Herreros 
2016

Using a model based on a Lotka- 
Volterra system, the temporal 
relationship between a conditioned 
and unconditioned stimulus is 
learned and used to generate an 
anticipatory blink.

Smooth pursuit 
eye movements

Adams, Perrinet, and 
Friston 2012

This work looks at the role of 
smooth pursuit eye movements, 
following a visual target. It aims 
to reproduce differences between 
neurotypical and schizophrenic 
individuals in response to pursuit 
with and without visual occlusion.

Psychosis Adams, Stephan et al. 
2013

Building on the songbird and 
smooth pursuit models, this 
research looks at how false, psy-
chotic inference may arise from 
suboptimal prior beliefs.

Illusions Brown and Friston 2012
Brown, Adams et al. 2013

Illusions offer a useful tool to reveal 
the prior beliefs our brains appeal 
to in the presence of uncertain or 
ambiguous sensory input.  These 
papers take several examples of 
common illusions and demonstrate 
the optimality of illusory inferences 
 under certain prior beliefs.
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 Table 8.1
(continued)

Application Sources Notes

Saccades Friston, Adams et al. 
2012
Donnarumma et al. 2017
Parr and Friston 2018a

Like the smooth pursuit simula-
tions,  these papers consider eye 
movement control. However,  here 
the eyes do not simply follow a 
target but must move to one of 
several pos si ble target locations. 
They deal with the generative 
models we need to be able to do 
this and (once the models have 
been specified) the emergent archi-
tectures and physiology.

Action 
observation

Friston, Mattout, and 
Kilner 2011

This work considers the role of the 
mirror neuron system and formal-
izes the idea that generative models 
of our own actions can also be put 
to use in modeling, and replicating, 
be hav ior observed in  others.

Attention Feldman and Friston 
2010
Kanai et al. 2015

Through predicting precision, we 
implicitly select the data that we 
believe is most informative. This 
work highlights how implementa-
tions of this idea reproduce classical 
psychophysical findings in the 
Posner paradigm and figure- ground 
discrimination tasks.

Hybrid models Friston, Parr, and de 
Vries 2017
Parr and Friston 2018c
Parr and Friston 2019b

 These models make use of discrete 
POMDP models in combination 
with predictive coding schemes. 
Most current examples of this 
modeling are framed in terms of 
visual search be hav ior or oculo-
motor control.  These require 
selecting where to look and then 
implementing the pro cess of 
looking  there.

Self- organization Friston 2013
Friston, Levin et al. 2015
Palacios et al. 2020

This line of research is based on 
the idea that groups of cells can 
or ga nize into a predefined struc-
ture when each cell has the same 
implicit generative model of that 
structure. Specifically, they must 
know what sort of sensory input 
they would predict if they  were a 
par tic u lar kind of cell.
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concepts outlined  here provide a foundation from which  these models may 

be further explored. Specifically, we have considered movement generation 

in terms of the fulfillment of predictions. This greatly simplifies the treat-

ment of motor control prob lems, as we do not need any additional machin-

ery or inverse models— just spinal or brain stem reflex arcs. We highlighted 

the role of precision and sensory attenuation in motor control of this sort. 

Given that a key advantage of continuous schemes is to articulate generative 

models in terms of dynamical systems, we outlined two ubiquitous types of 

dynamical system that have found widespread application in Active Infer-

ence research. Generalized Lotka- Volterra systems act to provide temporal 

sequencing in a continuous context, while Lorenz attractors may be used 

to generate rich simulations, including synthetic birdsong. Next we consid-

ered the concept of generalized synchrony. Synchronization of the internal 

states of a system to external states forms the basis of inferential treatments 

of brain function and is crucial in accounts of social systems— where exter-

nal states largely comprise conspecifics (i.e., creatures like me). Fi nally, we 

set out the unification of the discrete and continuous models of chapters 7 

and 8, bringing together the expected  free energy minimizing (exploitative 

and explorative) dynamics of POMDP formulations, the enaction of the 

be hav iors  these mandate through continuous pro cesses, and the reciprocal 

message passing that mediates this interaction. In short, this takes us from 

decisions to movements— and back again.
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Just  because we have the best hammer does not mean that  every prob lem is a nail.

— Barack Obama

9.1 Introduction

Ultimately, the models described in this book are only useful if they can 

answer scientific questions. In this chapter, we focus on the ways in which 

Active Inference can be applied in understanding empirical data. The cen-

tral idea is that we, as scientists, can appeal to the same maths as we have 

assumed the brain uses in previous chapters. Our general goal is to recover 

the par ameters of the generative model that a subject’s brain uses to pro-

duce be hav ior— the subjective model. For this, we can use our own genera-

tive model (of how the subjective model produces be hav ior)— the objective 

model. We can invert our objective model on the basis of the be hav ior we 

observe to draw inferences about the par ameters of the subjective genera-

tive model. This meta- Bayesian inference affords the opportunity to test 

hypotheses about the model we assume the brain uses and to phenotype 

individuals on the basis of the prior beliefs they would have to hold for 

their be hav ior to be Bayes optimal. Belief- based computational phenotyp-

ing of this sort holds promise in the emerging fields of computational psy-

chiatry, neuropsychology, and neurology.

9.2 Meta- Bayesian Methods

This chapter deals with the utility of Active Inference formulations in analyz-

ing data from behavioral experiments. This goes beyond the proof- of- principle 

9 Model- Based Data Analy sis

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



174 Chapter 9

simulations we have seen in previous chapters and instead exploits Active 

Inference in answering scientific questions. We have seen already that a sub-

ject’s generative model is the key determinant of be hav ior  under Active Infer-

ence. This implies that hypotheses about the  causes of empirical behavioral 

mea sure ments must be framed in terms of the alternative generative models 

used to select  those actions. Our challenge, then, is to fit an Active Inference 

scheme to observed data by manipulating the par ameters (i.e., prior beliefs) 

of the generative model.

Broadly speaking,  there are two (related) reasons for fitting a computa-

tional model to observed be hav ior. The first is to estimate par ameters of 

interest from that model that best explain the be hav ior of a specific subject 

or group of subjects. This is useful in characterizing subjective be hav ior in 

terms of the computations that generate it, a pro cess known as computa-

tional phenotyping (Montague et al. 2012, Schwartenbeck and Friston 2016, 

Friston 2017). Computational phenotypes may be used in combination 

with other mea sures (e.g., to establish links between neuroimaging find-

ings and function) or may be used alone in forecasting be hav iors in other 

settings (e.g., following a therapeutic intervention).

The second reason is to compare alternative hypotheses, expressed as 

models, that represent dif fer ent explanations for a behavioral phenomenon 

(Mirza et al. 2018).  These two agendas— parameter estimation and model 

comparison— map to one side of Bayes’ theorem. Pa ram e ter estimation is 

the pro cess of finding the posterior probability,  under a model, of a pa ram-

e ter setting. Model comparison rests on finding the marginal likelihoods 

(i.e., evidence) for each model. To recap, Bayes’ theorem is

P(u |θ ,m)
Likelihood
! "# $#

P(θ |m)
Prior
!"# $#

= P(θ |u,m)
Posterior
! "# $#

P(u |m)
Evidence
!"# $#

.
 

(9.1)

The right- hand side deals with the posterior probability of par ameters (θ ) 
given behavioral data (u)  under a model (m) and the model evidence, and 

the left- hand side tells us what we need to specify for our model: we need 

prior beliefs about our par ameters of interest and a likelihood function.

Importantly, while we appeal to the same Bayesian inference scheme as 

used in previous chapters, our purpose is dif fer ent  here. This rests on the 

fact that  there are two inference pro cesses  going on (figure 9.1). The first 

is that creatures use their model of the pro cesses generating their sensory 

data to draw inferences about their world (and about how to act). This has 

been the focus of the preceding chapters. The second is that we as objective 
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Experimental stimuli

õ

Θ P (θ | m)

P(õ, s�, � | θ, m)

�

Sτ+1Sτ-1 Sτ

Oτ+1Oτ-1 Oτ

G

P(ũ | θ, õ, m)

θ

ũ

Parameters

Subjective model

Observed behavior

Objective model

AA A

B B

Figure 9.1
Relationship between the subjective and objective models of meta- Bayesian infer-

ence. Inner dashed box: Subjective model assumed to be used by an experimental 

subject. This could be a POMDP model as illustrated or some other form of model. 

The impor tant features are that it depends on par ameters (θ  ) whose value we do not 

know and that it generates sensory data (o). Outer dashed box: Experimenter’s objec-

tive model (m) includes prior beliefs about the par ameters and predicts the be hav-

ior (u) we would expect on presenting experimental stimuli (sensory data from the 

subjective model’s perspective). Crucially, the likelihood distribution of the objective 

model depends on the subjective model. This means we evaluate the likelihood of 

par ameters taking a par tic u lar value as follows. First, we incorporate the par ameters 

in the subjective model. We then use the Active Inference schemes described in pre-

vious chapters to solve this model, presenting our experimental stimuli as sensory 

data, and infer a distribution over the most probable course of action. Fi nally, we 

evaluate the probability of the observed actions or choices, given this distribution. 

This is the likelihood of observed be hav ior given par ameters and stimuli— i.e., the 

likelihood distribution in the objective model.
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scientists observe the creature’s be hav ior and seek to draw inferences about 

the (subjective) generative model it is using by inverting our own (objective) 

generative model. The implication  here is that we are drawing inferences 

about an inferential process— sometimes referred to as “meta- Bayesian” 

inference (Daunizeau et al. 2010).

More formally, this approach defines the likelihood distribution in terms 

of the solution to an Active Inference prob lem. By using a given pa ram-

e ter setting, we can simulate be hav ior  under Active Inference and quan-

tify the likelihood that a series of actions would have been taken. Equipped 

with prior beliefs about the value of  these par ameters, we have a generative 

model of how a creature uses its generative model to produce actions. While 

our focus is on Active Inference (and discrete- time models specifically), the 

generic methods used  here may be used with any arbitrary likelihood func-

tion. Other normative models of be hav ior (such as  those used in reinforce-

ment learning) may be substituted in place of the Active Inference models.

The following sections unpack an example of a generic inference scheme 

that may be used for meta- Bayesian inference (namely, variational Laplace) 

and the use of hierarchical models for model comparison. We then pro-

vide a  simple  recipe for model- based data analy sis and fi nally review a key 

example of this procedure. It is impor tant to emphasize that understanding 

the technical details is not required to use  these methods effectively; thus, 

readers uninterested in  these details are invited to skip sections 9.3 and 9.4.

In brief, the basic idea is to evaluate the likelihood of any observed set 

of choices, given the unknown par ameters of interest— namely, the par-

ameters of a subject’s prior beliefs. We then combine this likelihood with 

our objective prior over  those par ameters to evaluate the posterior over the 

subject’s priors, in the usual way. If we have several subjects,  these poste-

riors can be combined to make inferences about group or between- subject 

effects, using parametric empirical Bayes (PEB). The requisite likelihood is 

simply the probability of sampling the observed sequence of choices,  under 

the subject’s posterior beliefs about action.  These posterior beliefs depend 

on what the subject sees (i.e., cues or stimuli) and her prior beliefs— and 

are evaluated in a straightforward way by solving the appropriate Active 

Inference scheme. Note that we are using Bayesian procedures twice: first 

to evaluate the subject’s posterior beliefs about action, and second to evalu-

ate our posterior beliefs about the unknown priors that characterize the 

subject. We now rehearse the vari ous parts of this meta- Bayesian procedure.
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9.3 Variational Laplace

Variational Laplace is an inference scheme based on the same princi ples as 

predictive coding (Friston, Mattout et al. 2007). However, it may be used for 

more generic likelihood functions than  those encountered  earlier— which 

 were defined as Gaussian. We  will start this section with an overview of the 

likelihood function L(θ ) of interest  here. This should give the probability of 

actions for an Active Inference scheme with a generative model with par-

ameters set at value θ. The actions selected depend on the observations made:

L(θ ) = ln P( !u |θ,m, !o)

P( !u |θ,m, !o) = !u i σ (θα ln !u)
!u = π iU

π = arg min
π

F
 

(9.2)

Unpacking this, the first term gives the log likelihood of an observed 

sequence of actions (ũ) as a function of par ameters (θ ), the model (m), and a 

sequence of stimuli (õ) presented during a real experiment. The probability 

of  these actions is found by using the par ameters to set the prior beliefs in 

a POMDP model of the sort described in chapter 7. We can then solve the 

POMDP as described in chapters  4 and 7, forcing the simulation to take 

the observed action sequence and presenting it with the same experimental 

stimuli. As we described in preceding chapters, this involves computing the 

beliefs (π) a synthetic subject holds about the policy or course of action she 

chooses to pursue. This minimizes the  free energy (F ) associated with her 

generative model of the world. We can then take  these beliefs and calculate 

the average probability of pursuing an action sequence. This requires us to 

distribute the probability for each policy over the actions implied by that 

policy (indexed by an array U ). Fi nally, a softmax temperature pa ram e ter 

(θα ) is applied to account for randomness (shaky- handedness) in be hav ior not 

accounted for by the model. If this softmax pa ram e ter is one, we are effec-

tively assuming that the subject samples her actions from posterior beliefs 

about her actions; sometimes, this is called matching be hav ior. Alterna-

tively, if the softmax pa ram e ter is very large, the action emitted is the action 

with the greatest subjective posterior— that is, the subject always chooses 

the most likely option. This softmax pa ram e ter can itself be estimated.

The result is the probability of the actions  under the model, given a 

sequence of stimuli and par ameters— that is, a likelihood of behavioral 

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



178 Chapter 9

data given a model. Equipping the objective par ameters with Gaussian pri-

ors1 θ ∼ N (η,Π(1) )( ), we can use the Laplace assumption to express a ( free 

energy) approximation to model evidence:

ln P( !u |m, !o) ≈ L(µ) + 1
2 ε iΠ(1)ε + ln ∇µµL(µ) − Π(1)( )

ε = η− µ

µ = arg max
µ

L(µ) − 1
2 ε iΠ(1)ε + ln ∇µµL(µ) − Π(1)( ){ }

 

(9.3)

Equation 9.3 is the same as that unpacked in box 4.3 (generalized to a 

multidimensional pa ram e ter space), but  here we have substituted an 

explicit form for the posterior covariance and assumed a normally distrib-

uted prior. In chapter 4 and in the applications in chapter 8, we ignored 

the terms in equation 9.3 that did not depend on the mode. However, it 

is impor tant to include  these  here when we consider model comparison 

prob lems.

To find the value of μ that maximizes the last line of equation 9.3, we 

perform a gradient ascent.  Under quadratic assumptions, this reduces to 

the following:

µ. = ∇µL(µ) + Π(1)ε
 

(9.4)

While an explicit form for the gradient of the log likelihood used  here 

may not be available, finite difference methods2 may be used to calculate 

a reasonable numerical approximation.  These may also be used to find the 

posterior precision, which is the second derivative (or Hessian) of the nega-

tive log likelihood plus the prior precision. Equation 9.4 is the simplest 

form of update, but often more sophisticated methods based on the local 

curvature are used.

9.4 Parametric Empirical Bayes (PEB)

The variational Laplace procedure in the previous section lets us draw infer-

ences about, and quantify the evidence for a model of, choice be hav ior. 

This enables us to computationally phenotype an individual and to com-

pare alternative hypotheses about that individual. However, the in ter est ing 

questions often lie at a group level. For example, we might be interested in 

how a parameter— such as the precision of prior preferences— varies with 

age. To answer this question, we can use the approach of section 9.3 to fit 
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models to the be hav ior of individual participants with a range of ages. We 

then formulate a general linear model that generates the pa ram e ter of inter-

est, taking age into account:

P(θ |β ,X) = N (Xβ , Π(2) )  (9.5)

 Here, X is a matrix whose columns are alternative explanatory variables and 

whose rows indicate each participant. The first column of X typically com-

prises a matrix of ones (to indicate the effect of the mean pa ram e ter over 

subjects). The second column, in our example, might be the age of each 

participant. The β vector indicates the size of effect of each of the explana-

tory variables in X. The first ele ment of β is then the average value of the 

precision (or any other pa ram e ter), while the second is the effect of age on 

precision. This value is the slope of the line in a plot of age ( x- axis) against 

predicted precision ( y- axis).  There may be an arbitrary number of columns 

of X, with an arbitrary number of ele ments in β.

Once we have fit the model expressed in equation 9.5, supplemented 

with priors for the β values, we can ask questions about the role of the 

explanatory variables. For example, we can ask  whether age has an effect on 

the precision of prior preferences by comparing the evidence for a model 

in which the second ele ment of β is allowed to deviate from zero with the 

evidence for a model with a precise belief that it is zero. Practically speak-

ing, this can be done without multiple model inversions through use of 

Bayesian model reduction (Friston, Parr, and Zeidman 2018).

9.5 Instructions for Model- Based Analy sis

In practice, we follow the steps outlined below to analyze empirical choice 

be hav ior using active inference (Schwartenbeck and Friston 2016).  These 

refer to the relevant routines available in the SPM12 Matlab package.

1. Collect behavioral data, including the choices made and the sensory 

input available to the person making that choice. In addition, collect 

data of interest for second- level, between- subject analy sis (e.g.,  whether 

the subject is a patient or a control subject, relevant demographic infor-

mation, and so on).

2. Formulate a POMDP model as in chapter 7. This should be a function 

that takes par ameters as inputs and outputs a fully specified (but not yet 

solved) POMDP.
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3. Specify a likelihood function (i.e., equation 9.2). This tells us how the 

model should be used to calculate a likelihood. This typically calls a 

POMDP solver (like the spm_MDP_VB_X.m routine) to simulate be hav ior 

and quantifies the likelihood of observed actions.

4. Specify prior beliefs about the par ameters in terms of expectations and 

precisions. Often  these  will be centered on zero, with precisions reflect-

ing plausible ranges.

5. Solve for posterior probability and model evidence. This uses a stan-

dard inference scheme such as the variational Laplace procedure out-

lined above (equation 9.4). The spm_nlsi_Newton.m routine  will do 

this automatically.

6. Perform group- level analy sis. This typically makes use of PEB, which 

treats the estimated par ameters for each individual as if they  were gener-

ated by a second- level model. This allows us to test hypotheses about the 

 causes of  those par ameters. Practically, this may be performed using the 

spm_dcm_peb.m routine. Alternative analyses include standard statisti-

cal tests of association between the inferred par ameters for each subject 

and other subject- specific mea sures. For example, a canonical variates 

analy sis may be used to assess the relationship between questionnaire 

scores and inferred par ameters.

Figure  9.2’s summary of  these instructions are based on the be hav ior 

of the rat in the T- maze task described in chapter 7. First, we place a rat in 

a T- maze with a rewarding stimulus in  either the left or right arm and an 

informative cue in the central arm. We then rec ord the sequence of actions 

taken by the rat. This procedure may be repeated over multiple  trials to 

rec ord learned be hav ior, and it may be repeated for multiple dif fer ent rats 

 under dif fer ent interventions (e.g., pharmacological or optoge ne tic).

Once  these behavioral data have been obtained, we need a likelihood 

function that lets us quantify the probability of be hav ior (for a given rat 

in a given condition)  under specific pa ram e ter settings. We can do this by 

formulating the POMDP model we considered in chapter 7. This must be 

pa ram e terized in terms of the par ameters whose likelihood we seek to find. 

For example, if we wanted to assess the precision associated with prefer-

ences, we might include a log scale pa ram e ter that makes the preference 

distribution more or less peaky.

Having set up the generative model (from the perspective of the rat), 

we can automatically solve the POMDP using the belief- update equations 
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in chapter  4. This lets us calculate the probability of the data (i.e., the 

sequence of arms visited) conditioned on the model with the (preferences) 

scale pa ram e ter at a par tic u lar value. Combining this likelihood with 

our prior completes the specification of a generative model for be hav ior 

(from the perspective of the scientist). This may be solved using variational 

Laplace to find a posterior probability distribution over the scale pa ram e ter 

for each rat.

�

Sτ+1Sτ-1 Sτ

Oτ+1Oτ-1

τ = 1 τ = 2 τ = 3

Oτ

Oτ+1Oτ-1 Oτ

ε�τ─1 ε�τ ε�τ+1

s�τ─1

sτ─1

s�τ

sτ

s�τ+1

sτ+1

ς�τ+1ς�τς�τ─1

�G

BB

A

DR

1 2Data collection POMDP model Likelihood function3

6 5PEB analysis Invert model Prior beliefs4

RRR

Chapter 7

C
hapter 4A A

P(ũ | θ, õ, m)

P(θ | m, õ,  ũ)
∞  P(θ | m) P(ũ | θ, õ, m)

P(θ | m)θ = X β + ω

ũ

Figure 9.2
Roadmap of the six- step inversion procedure for model- based data analy sis, as out-

lined in the main text (with reference to the chapters where more detail may be 

found). The arrows indicate the dependencies between each part of the pro cess. The 

POMDP model must be defined for the likelihood to be evaluated. The model inver-

sion requires collected data and the likelihood and priors; the PEB analy sis cannot 

take place  until  after model inversion for each subject. Steps 4 and 5 schematize the 

update from a prior distribution over par ameters  under a model to a posterior distri-

bution. The evidence and posterior from each model can then be combined using 

PEB to find posterior densities (shown as expectations with accompanying credible 

intervals) for the β coefficients of a linear model predicting  these par ameters.
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In practice, before analyzing  actual data, we may want to check the 

face validity of the POMDP model by using it to generate fictive data— 

and considering  whether they are qualitatively plausible given the prob lem 

at hand. A second sensible test for the model is pa ram e ter recovery. This 

entails generating fictive data  under some (known) pa ram e terization to see 

 whether  these par ameters can be recovered on inverting the model. This is 

useful to verify  whether some par ameters (or their combinations) are pos si-

ble to recover (i.e., identifiable).

Fi nally, we can construct a design matrix for a linear model, each row of 

which represents a computational phenotype (e.g., a posterior density over 

each subject’s preferences), with columns representing dif fer ent attributes 

of  those subjects.  These attributes are variables that could explain differ-

ences in a rat’s preferences. In addition to a column of ones indicating 

the average preferences over all rats,  these  will include  things like their 

age,  whether a drug has been administered, and so on. With this model of 

between- subject effects, we now perform a PEB analy sis to assess the contri-

bution of  these explanatory variables to prior preferences.

9.6 Examples of Generative Models

In this section, we leverage two examples in the lit er a ture illustrating the 

use of continuous and discrete generative models. First, we briefly overview 

the methods used by Adams, Aponte et al. (2015) and Adams, Bauer et al. 

(2016) (hereafter in this section, Adams et  al.) to model smooth pursuit 

eye movements as a way of quantifying the precision par ameters of each 

subject’s generative models. An impor tant aspect of this design was the 

simultaneous collection of electrophysiological data (via magnetoencepha-

lography) that enabled the authors to ask questions about the neurobio-

logical substrates of precision or confidence encoding. We then turn to an 

analy sis of saccadic eye movements by Mirza et al. (2018; hereafter in this 

section, Mirza et al.) formulated as a POMDP model. Each of the associated 

experiments is cartooned in figure 9.3. Our hope is that  these examples  will 

help readers understand how the generic methods outlined above can be 

used empirically to answer scientific questions.

In terms of the sequence of steps outlined in figure 9.2, Adams et  al. 

collected data (step 1) from a task in which subjects had to maintain fixa-

tion on a moving visual target. The details are not impor tant, but this task 
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comprised two conditions. In the first, the target moved according to a 

predictable sinusoid. In the second, it followed the same trajectory with 

additive Gaussian noise. The data collected included the eye- movement 

trajectories. The authors formulated a subjective model (step 2). Unlike the 

POMDP model shown in figure 9.2, they opted for a continuous model of 

the sort described in chapter 8. In brief, the model predicted propriocep-

tive and visual input from the eyes, where the fixation point was assumed 

to be attracted to the target location. The likelihood (step 3) is constructed 

using the (active) predictive coding schemes outlined in chapter  4. This 

quantifies the probability of the actions (eye movements)  under a set of 

Eye-tracking Eye-tracking

Time

Cat
Bird

Eyes vertical
Eyes horizontal

FoveationTarget

Target
Eyes

Lo
ca

tio
n

TimeLo
ca

tio
n

Figure 9.3
Two experiments outlined in section 9.5. The details are not impor tant but high-

light where meta- Bayesian inference has been successfully exploited and the kinds of 

behavioral data it can be applied to. Left: Experiment of Adams et al., who mea sured 

smooth pursuit eye movements as subjects tracked a moving target. Right: Experi-

ment from Mirza et al., who mea sured saccadic eye movements during an explora-

tion task. The visual display was divided into four quadrants, two of which included 

stimuli (cat and bird). Dif fer ent scene categories involved dif fer ent configurations of 

stimuli, meaning participants had to select which quadrants to foveate to gain suffi-

cient information to categorize the scene. The Adams task (left ) generates continuous 

eye- tracking data, while the Mirza task (right ) leads to a sequence of fixations and 

may be discretized.  These are the behavioral data (u) from step 1 in figure 9.2.
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log precision par ameters and the model set out in step 2. Moving on to 

step 4, the authors specified prior beliefs as normal distributions over the 

log precisions. They inverted the model (step 5) to find posterior distribu-

tions over  these precision par ameters. Step 6 did not use a PEB analy sis 

but used the neuroimaging data collected concurrently with the behavioral 

task. The authors used dynamic causal modeling to estimate the gain of 

superficial pyramidal cells in the primary visual cortex. This means they 

had estimates of precision and synaptic gain for each subject. This allowed 

the authors to perform a group- level analy sis by assessing the correlation 

between par ameters of the subjective model and their biological substrates. 

Their demonstration of this correlation provides an impor tant example of 

how Active Inference formulations of be hav ior let us ask (and answer) ques-

tions about the relationship between belief updating and neurobiology.

In our second example, Mirza et  al. used the POMDP formulation of 

Active Inference to address the role of information gain in driving  human 

be hav ior. Again, we unpack this in terms of figure 9.2’s steps. Mirza et al. 

collected behavioral data (step 1) while subjects performed a visual foraging 

task.  Here, the aim was to classify a visual scene into one of several groups. 

Each ele ment of the scene was only revealed once subjects fixated  those 

locations; this meant multiple fixations  were required to acquire enough 

evidence for a given scene category. The data collected by the authors 

included the sequence of saccades (fast eye movements) performed. The 

model (step 2) used was a POMDP model described in Mirza et al. (2016) 

that predicted discretized proprioceptive, visual, and feedback outcomes, 

conditioned on the current fixation location and the scene category. Pref-

erences (see chapter 7)  were placed over the feedback outcome such that 

the model anticipates (and thus prefers) being correct in the categoriza-

tion. The likelihood function (step 3) was obtained by solving the model 

using the scheme outlined in chapter 4  under dif fer ent pa ram e ter settings. 

The par ameters in question included (among  others) a log scaling pa ram-

e ter for the precision of the preference distribution. The authors specified 

prior distributions (step 4) over the log scaling (and other par ameters) and 

inverted the model for each subject (step 5). They used the log evidence 

estimated for each subject to assess the evidence for models that did or did 

not motivate be hav ior using the epistemic component of the expected  free 

energy, finding greater evidence for  those models that included epistemic 

affordance in all subjects. They then employed a PEB analy sis (step 6) to 
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assess changes in prior beliefs for subjects over the course of multiple  trials, 

finding evidence in  favor of changes in belief par ameters (i.e., active learn-

ing). Fi nally, they used a canonical covariates analy sis to assess the relation-

ship between linear combinations of the phenotypic variables estimated 

for each subject (e.g., precision of preferences) and linear combinations of 

per for mance mea sures (e.g., percentage correct and reaction time).

9.7 Models of False Inference

Men in general are quick to believe that which they wish to be true.

— Julius Caesar

Given the relevance of  these methods for fields like computational psychia-

try (Friston, Stephan et al. 2014), we end with an overview of false inference, 

which is central to the notion of psychopathology as a failure of belief 

updating. One benefit of using an inferential framework like Active Infer-

ence is that it si mul ta neously addresses multiple dimensions of psychiat-

ric disorders, linking together maladaptive be hav ior (e.g., compulsions or 

addictions) and psychological- level (e.g., false beliefs) and biological- level 

phenomena (e.g., abnormalities of neuromodulators).

As we cannot do justice  here to the extensive lit er a ture that uses Active 

Inference in the modeling of disease pro cesses, this section provides the 

briefest of overviews to suggest a framework in which to think about com-

putational pathologies. See  table 9.1 for a nonexhaustive sampling of illus-

trative examples, which include models specified in discrete and continuous 

time (based on  those in chapters 7 and 8, respectively). In our discussion, 

we  will appeal to the structure of POMDP- like models; the princi ples that 

underwrite false inference in  these settings are largely the same.

The hypothesis under lying inferential approaches (like Active Inference) 

is that psychopathological conditions may be conceptualized as disorders of 

inference. The term disorder does not necessarily imply that the inferential 

mechanism is flawed (e.g., generates incorrect posterior probabilities). In 

most of the studies reviewed in  table 9.1, the inferential mechanism oper-

ates normally, but based on a flawed generative model (i.e., a generative 

model endowed with aberrant prior beliefs). This means that, ultimately, 

pathology is a consequence of aberrant prior beliefs— and one can recover 

 these priors using the model- based data analy sis outlined in this chapter.
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 Table 9.1
Computational pathology

Pathology Sources Notes

Addiction, 
impulsivity, and 
compulsivity

FitzGerald, Schwartenbeck 
et al. 2015
Schwartenbeck, FitzGerald, 
Mathys, Dolan, Wurst et al. 
2015
Mirza et al. 2019
Fradkin et al. 2020

Addiction is an impor tant example 
of be hav ior that appears aberrant but 
can be framed as optimal inference 
 under the right sort of generative 
model. Work by Schwartenbeck et al. 
illustrated this using a  limited offer 
task wherein participants are more or 
less confident about  whether they  will 
receive a reward on waiting. Low con-
fidence leads to compulsive be hav ior 
of the sort associated with addiction. 
Subsequent work on this theme looks 
at the prior beliefs associated with 
more or less impulsive be hav ior, using 
the patch- leaving paradigm, and 
examines the role of attenuated prior 
precision in obsessive compulsive 
disorder.

Delusions Brown et al. 2013
Friston, Parr et al. 2020

Delusions, characterized by fixed, 
false beliefs, are simply articulated in 
Active Inference as precise poste-
rior probability distributions in the 
absence of supportive evidence. If 
sufficiently precise, they  will be fixed 
even in the face of (subsequent) 
contradictory evidence. The mecha-
nisms under lying each delusion may 
be dif fer ent. For example, failures of 
sensory attenuation may be central 
to delusions of agency. Recent work 
provides an example of a shared delu-
sion (folie à deux), which depends on 
two agents— with no information— 
reaching a confident consensus about 
the state of the world. 

Hallucinations Adams, Stephan et al. 2013
Benrimoh et al. 2018
Parr, Benrimoh et al. 2018
Corlett et al. 2019

 These simulations rest on imbalances 
between prior and likelihood preci-
sions. Overinterpretation of spuri-
ous sensory data due to a failure of 
attenuation of likelihood precision, 
or a failure to correct prior beliefs 
due to excessive attenuation, each 
offer mechanisms for false perceptual 
inference.
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 Table 9.1
(continued)

Pathology Sources Notes

Interpersonal 
and personality 
disorders

Moutoussis et al. 2014
Prosser et al. 2018

Interpersonal inference depends on 
having models about other  people and 
how they may react to our decisions. 
This has prompted the development 
of models of trust games, which rely 
on interactions between two (or more) 
parties, and charity games. The latter 
have been used to reproduce the 
self- aggrandizing and remorselessness 
associated with psychopathy.  These 
traits are simulated by modulating 
the degree to which beliefs about 
self- worth depend on decisions to be 
charitable versus selfish and sensitivity 
to the approval of  others.

Oculomotor 
syndromes

Adams, Perrinet, and Friston 
2012
Parr and Friston 2018a

In  these papers, continuous- time 
generative models are employed 
to predict dynamic evolution of 
Newtonian systems. By rendering 
vari ous aspects of the generative 
model conditionally in de pen dent of 
 others, oculomotor syndromes such 
as internuclear ophthalmoplegias may 
be induced.

Pharmacotherapy Parr and Friston 2019b Given the associations we proposed 
between precision par ameters and neu-
rochemicals in chapter 5, it should be 
pos si ble to simulate the consequences 
of pharmacological manipulation of 
 these systems. This work illustrates 
the consequences of several syn-
thetic pharmacological interventions 
on per for mance of an oculomotor 
delay- period task, providing a proof of 
princi ple that  these methods can be 
used to simulate not only pathology 
but also the influence of therapeutics.

Prefrontal 
syndromes

Parr, Rikhye et al. 2019  These simulations set out a difference 
between medial and lateral prefrontal 
 syndromes by attenuating the 
precision of transitions to impair the 
per for mance of a memory guided task 
(lateral) versus the precision of an 
interoceptive likelihood that deter-
mines motivation to engage in the 
task (medial).

(continued)
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Aberrant priors may be about states or precisions, or they may be struc-

tural priors about the form of the generative model. A useful way of thinking 

about the  causes of pathological be hav ior is to think about the prior belief 

used for policies and about how each part of this may be disrupted to give 

rise to abnormal policy se lection. Policy priors depend on the expected  free 

energy, which itself depends on posterior beliefs, the potential for informa-

tion gain, and prior preferences (C). Priors over policies may additionally be 

equipped with a fixed form term (E ), representing habitual biases.

Taking each of  these in turn: Posterior beliefs depend on priors and likeli-

hoods. To form an aberrant posterior belief, one or both must be disrupted. 

Typically, this disruption takes the form of under-  or overestimation of the 

 Table 9.1
(continued)

Pathology Sources Notes

Visual neglect Parr and Friston 2017a Inattention to the left side of space 
may be induced by several alterna-
tive lesioned priors. Among  these, 
an increase in Dirichlet par ameters 
for this side of space reduces the 
novelty associated with saccades to 
the left, increasing visual sampling 
of the right instead. Alternatively, 
setting preferences consistent with 
right- sided proprioceptive or visual 
outcomes or increasing habitual 
engagement in right- sided saccades 
reproduces qualitatively similar 
be hav ior. 

Disorders of 
interoceptive 
inference

Barrett et al. 2016
Allen et al. 2019
Maisto, Barca et al. 2019
Pezzulo, Maisto et al. 2019
Barca and Pezzulo 2020
Tschantz et al. 2021

Simulations of interoceptive inference 
(or active inference in the interocep-
tive domain) suggest that imbalances 
between prior and likelihood preci-
sions about (for example) cardiac or 
gastric signals can cause false beliefs 
about the internal state of the body, 
misperceptions of bodily symptoms, 
and psychosomatic hallucinations. 
Furthermore, they can have cascad-
ing effects on autonomic regulation 
and action se lection, causing vari ous 
types of maladaptive be hav ior, such 
as hypervigilance, excessive medicine 
use, and excessive food restrictions.
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balance of precisions. Excessively high likelihood, compared to prior, preci-

sion leads to overinterpretation of (potentially noisy) sensory input. This 

leads to overfitting in the sense that unwarranted conclusions may be drawn 

from spurious data. If the balance is disrupted in the opposite direction, 

favoring confidence in the prior, internally generated percepts become resis-

tant to conflicting sensory input. Both mechanisms have been associated 

with the development of hallucinations, and the two can coexist when hier-

archical models are employed. Given the association of vari ous precisions 

with neuromodulatory chemicals (see chapter 5), it seems sensible that con-

ditions such as Lewy body dementia, where cholinergic signaling is impaired, 

and schizo phre nia, with abnormalities of the dopaminergic system, pre sent 

with hallucinatory phenomena— that is, false perceptual inference.

Next, we consider the role of information gain.  Here, the precision of 

the likelihood and the precision of prior beliefs tell us the degree to which 

uncertainty is resolvable and the amount of uncertainty  there is to resolve, 

respectively. The precision of the prior beliefs applies to  either par ameters 

of the generative model (i.e., influences novelty) or to the states (i.e., influ-

ences salience). Interpreting the par ameters of conditional probabilities as 

synaptic efficacies or the precisions as synaptic gains suggests that synaptic 

disconnection syndromes may be thought of as disruption of one or both 

of  these. Absent synapses cannot be modulated, so this is very much like 

having extremely confident prior beliefs about a conditional probability, as 

new data cannot update the associated efficacy. This has impor tant impli-

cations for the potential information gain of dif fer ent policies, as has been 

exploited in modeling sensory neglect syndromes.

Fi nally, the preferences and policy priors provide a clear influence over 

be hav ior.  These could underwrite the development of addictive habits or 

the apathy associated with vari ous psychiatric and neurological syndromes 

(Hezemans, Wolpe, and Rowe 2020). In summary, defective prior beliefs 

at vari ous places in the generative models described above provide a func-

tional or teleological explanation for pathological be hav ior.

9.8 Summary

In this chapter, we outlined an approach that uses the theoretical models 

described in previous chapters to pose questions to empirical data. This lets 

us use Active Inference as a noninvasive tool to probe the computational 
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pro cesses that individuals use to make decisions. We have focused on a few 

 simple examples. However, Active Inference– based models have been devel-

oped for more realistic and complicated tasks (Cullen et al. 2018) designed 

to evoke richer be hav ior for computational phenotyping. In addition to 

setting out a six- step pro cess for model- based analy sis, we highlighted two 

examples of the use of  these methods.  These bring out key variations in 

how this may proceed, including the kinds of be hav ior mea sured (smooth 

trajectories or discrete choices), the choice of model (continuous or dis-

crete), and the dif fer ent scientific questions being asked. The last of  these 

is the most impor tant, as it determines the preceding choices. We saw the 

use of computational phenotyping in combination with neuroimaging 

(Adams, Bauer et al. 2016) to ask questions about the relationship between 

synaptic gain and precision. In addition, we saw how model inversion may 

be used to assess the contributions of alternative behavioral drives and 

predictors of per for mance (Mirza et al. 2018). Ultimately, the six steps in 

figure 9.1 provide a generic method for designing experiments to noninva-

sively interrogate the implicit generative models  people (or other animals) 

use to drive be hav ior. This offers an opportunity to answer questions about 

the function of the ner vous system in health and disease.
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In general we are least aware of what our minds do best.

— Marvin Minsky

10.1 Introduction

In this chapter, we wrap up Active Inference’s main theoretical points (from 

the first part of the book) and its practical implementations (from the sec-

ond part). Then, we connect the dots: we abstract away from the specific 

Active Inference models discussed in previous chapters to focus on integrative 

aspects of the framework. One benefit of Active Inference is that it provides 

a complete solution to the adaptive prob lems that sentient organisms have 

to solve. It therefore offers a unified perspective on prob lems like perception, 

action se lection, attention, and emotion regulation, which are usually treated 

in isolation in psy chol ogy and neuroscience— and addressed using distinct 

computational approaches in artificial intelligence. We  will discuss the Active 

Inference perspective on each of  these prob lems (and more) in the context 

of established theories, such as cybernetics, ideomotor theory of action, rein-

forcement learning, and optimal control. Fi nally, we briefly discuss how the 

scope of Active Inference can be extended to cover other biological, social, 

and technological topics that are not discussed in depth in this book.

10.2 Wrapping Up

This book offers a systematic account of the theoretical under pinnings and 

practical implementations of Active Inference.  Here, we briefly summarize 

the discussion of the first nine chapters. This offers an opportunity to 

10  Active Inference as a Unified Theory 
of Sentient Be hav ior
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rehearse the key constructs of Active Inference that  will be useful in the 

remainder of this chapter.

In chapter 1, we introduced Active Inference as a normative approach 

to understanding sentient creatures that form part of action- perception 

loops with their environment (Fuster 2004). We explained that normative 

approaches start from first princi ples to derive and test empirical predic-

tions about the phenomenon of interest— here, the ways living organisms 

persist while engaging in adaptive exchanges (action- perception loops) with 

their environment. We also considered that one could arrive at Active Infer-

ence by following a low road or a high road.

In chapter 2, we illustrated the low road to Active Inference. This road 

starts from the idea that the brain is a prediction machine, endowed with a 

generative model: a probabilistic repre sen ta tion of how hidden  causes in the 

world generate sensations (e.g., how light reflected off an apple stimulates 

the ret ina). By inverting this model, it infers the  causes of its sensations 

(e.g.,  whether I am seeing an apple, given that my ret ina is stimulated in a 

certain way). This view of perception (aka perception- as- inference) has its 

historical roots in the Helmholtzian notion of unconscious inference and, 

more recently, in the Bayesian brain hypothesis. Active Inference extends 

this view by bringing action control and planning within the compass of 

inference (aka control- as- inference, planning- as- inference). Most impor-

tantly, it shows that perception and action are not quintessentially separa-

ble pro cesses but fulfill the same objective. We first described this objective 

more informally, as the minimization of a discrepancy between one’s model 

and the world (which generally reduces to surprise or prediction error mini-

mization). Put simply, one can minimize the discrepancy between a model 

and the world in two ways: by changing one’s mind to fit the world (per-

ception) or by changing the world to fit the model (action).  These can be 

described in terms of Bayesian inference. However, exact inference is often 

intractable, so Active Inference uses a (variational) approximation (noticing 

that exact inference may be seen as a special case of approximate inference). 

This leads to the second, more formal description of the common objective 

of perception and action, as variational  free energy minimization. This is the 

core quantity used in Active Inference and may be unpacked in terms of 

its constituent parts (e.g., energy and entropy, complexity and accuracy, 

or surprise and divergence). Fi nally, we introduced a second kind of  free 

energy: expected  free energy. This is particularly impor tant during planning, 
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as it affords a way to score alternative policies by considering the  future 

outcome that they are expected to generate. This too may be unpacked in 

terms of its constituent parts (e.g., information gain and pragmatic value, 

expected ambiguity and risk).

In chapter 3, we illustrated the high road to Active Inference. This alter-

native road starts from the deflationary imperative for biological organisms 

to preserve their integrity and avoid dissipation, which can be described 

as avoiding surprising states. We then introduced the notion of a Markov 

blanket: a formalization of the statistical separation between the organism’s 

internal states and the world’s external states. Crucially, internal and exter-

nal states can only influence each other vicariously via intermediate (active 

and sensory) variables, called blanket states. This statistical separation— 

mediated by the Markov blanket—is crucial to endowing an organism with 

some degree of autonomy from the external world. To understand why this 

is a useful perspective, consider the following three consequences.

First, an organism with a Markov blanket appears to model the exter-

nal environment in a Bayesian sense: its internal states correspond—on 

 average—to an approximate posterior belief about external states of the 

world. Second, the autonomy is guaranteed by the fact that the organism’s 

model (its internal states) is not unbiased but prescribes some existential 

preconditions (or prior preferences) that must be maintained— for example, 

for a fish, being in the  water. Third, equipped with this formalism, it is pos-

si ble to describe optimal be hav ior (with re spect to prior preferences) as the 

maximization of (Bayesian) model evidence by perception and action. By 

maximizing model evidence (i.e., self- evidencing) an organism ensures that 

it realizes its prior preferences (e.g., a fish stays in the  water) and avoids 

surprising states. In turn, the maximization of model evidence is (approxi-

mately) mathematically equivalent to the minimization of variational  free 

energy— hence we arrive again (in another way) at the same central con-

struct of Active Inference discussed in chapter 2. Fi nally, we detailed the 

relationship between minimizing surprise and Hamilton’s princi ple of least 

Action. This evinces the formal relationship between Active Inference and 

first princi ples in statistical physics.

In chapter 4, we outlined the formal aspects of Active Inference. We focused 

on the passage from Bayesian inference to a tractable approximation— 

variational inference— and the resulting objective for organisms to mini-

mize variational  free energy via perception and action. The insight from this 
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treatment is the importance of the generative model that creatures use to 

make sense of their world. We introduced two kinds of generative models 

that express our beliefs about how data are generated, using discrete or con-

tinuous variables. We explained that both afford the same Active Inference, 

but they apply when states of affairs are formulated in discrete time (as par-

tially observed Markov decision prob lems) or continuous time (as stochastic 

differential equations), respectively.

In chapter  5, we remarked on the difference between the normative 

princi ple of  free energy minimization and a pro cess theory about how this 

princi ple may be implemented by the brain— and explained that the lat-

ter generates testable predictions. We then outlined aspects of the pro cess 

theories accompanying Active Inference, which encompass domains such 

as neuronal message passing, including neuroanatomical circuitry (e.g., 

cortico- subcortical loops) and neuromodulation. For example, at an ana-

tomical level, message passing maps nicely to a canonical cortical microcir-

cuit, with predictions that stem from deep cortical layers at one level and 

target superficial cortical layers at the level below (Bastos et al. 2012). At a 

more systemic level, we discussed how Bayesian inference, learning, and 

precision weighting correspond to neuronal dynamics, synaptic plasticity, 

and neuromodulation, respectively, and how the top- down and bottom-up 

neural message passing of predictive coding maps to slower (e.g., alpha or 

beta) and faster (e.g., gamma) brain rhythms.  These and other examples 

illustrate that  after designing a specific Active Inference model, one can 

draw neurobiological implications from the form of its generative model.

In chapter 6, we provided a  recipe to design Active Inference models. 

We saw that while all creatures minimize their variational  free energy, they 

behave in dif fer ent, sometimes opposite ways  because they are endowed 

with dif fer ent generative models. Therefore, what distinguishes dif fer ent 

(e.g., simpler from more complex) creatures is just their generative model. 

 There is a rich repertoire of pos si ble generative models, which correspond to 

dif fer ent biological (e.g., neuronal) implementations and produce dif fer ent 

adaptive—or maladaptive— be hav iors in dif fer ent contexts and ecological 

niches. This renders Active Inference equally appropriate for characterizing 

 simple creatures like bacteria that sense and seek nutrient gradients, com-

plex creatures like us that pursue sophisticated goals and engage in rich 

cultural practices, or even dif fer ent individuals—to the extent that ones 

appropriately characterizes their respective generative models. Evolution 
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appears to have discovered increasingly sophisticated design structures for 

brains and bodies that made organisms able to deal with (and shape) rich 

ecological niches. Modelers can reverse- engineer this pro cess and specify 

the designs for brains and bodies of creatures of interest, in terms of genera-

tive models, based on the kinds of niche they occupy. This corresponds to a 

series of design choices (e.g., models using discrete or categorical variables, 

shallow or hierarchical models)— which we unpacked in the chapter.

In chapters 7 and 8, we provided numerous examples of Active Infer-

ence models in discrete and continuous time, which address prob lems of 

perceptual inference, goal- directed navigation, model learning, action con-

trol, and more.  These examples  were designed to showcase the variety of 

emergent be hav iors  under  these models and to detail the princi ples of how 

they are specified practically.

In chapter 9, we discussed how to use Active Inference for model- based 

data analy sis and to recover the par ameters of an individual’s generative 

model, which better explain the subject’s be hav ior in a task. This computa-

tional phenotyping uses the same form of Bayesian inference discussed in the 

rest of the book, but in a dif fer ent way: it helps design and evaluate (objec-

tive) models of  others’ (subjective) models.

10.3 Connecting the Dots: The Integrative Perspective  

of Active Inference

Some de cades ago, the phi los o pher Dennett lamented that cognitive sci-

entists devoted too much effort to modeling isolated subsystems (e.g., per-

ception, language understanding) whose bound aries are often arbitrary. He 

suggested to try instead modeling “the  whole iguana”: a complete cognitive 

creature (perhaps a  simple one) and an environmental niche for it to cope 

with (Dennett 1978).

One benefit of Active Inference is that it offers a first princi ple account of 

the ways in which organisms solve their adaptive prob lems. The normative 

approach pursued in this book assumes that it is pos si ble to start from the 

princi ple of variational  free energy minimization and derive implications 

about specific cognitive pro cesses, such as perception, action se lection, 

attention and emotion regulation, and their neuronal under pinnings.

Imagine a  simple creature that must solve prob lems like finding food 

or shelter. When cast as Active Inference, the creature’s prob lems can be 
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described in enactive terms, as acting to solicit preferred sensations (e.g., 

food- related sensations). To the extent that  these preferred sensations are 

included (as prior beliefs) in its generative model, the organism is effectively 

gathering evidence for its model—or, more allegorically, for its existence 

(i.e., maximizing model evidence or self- evidencing). This  simple princi-

ple has ramifications for psychological functions traditionally considered 

in isolation, such as perception, action control, memory, attention, inten-

tion, emotion, and more. For example, perception and action are both self- 

evidencing, in the sense that a creature can align what it expects, given its 

generative model, with what it senses  either by changing its beliefs (about 

the presence of food) or by changing the world (soliciting food- related sen-

sations). Memory and attention can also be thought of as optimizing the 

same objective. Long- term memory develops through learning the par-

ameters of a generative model. Working memory is belief updating when 

beliefs are about external states in the past and  future. Attention is the opti-

mization of beliefs about the precision of sensory input. Forms of planning 

(and intentionality) can be conceptualized by appealing to the capacity of 

(some) creatures to select among alternative  futures, which in turn requires 

temporally deep generative models.  These predict the outcomes that would 

result from a course of action and are optimistic about  these outcomes. This 

optimism manifests as the belief that  future outcomes  will lead to preferred 

outcomes. Deep temporal models can also help us understand sophisticated 

forms of prospection (where beliefs about the pre sent are used to derive 

beliefs about the  future) and retrospection (where beliefs about the pre sent 

are used to update beliefs about the past). Forms of interoceptive regulation 

and emotion can be conceptualized by appealing to generative models of 

internal physiology that predict the allostatic consequences of  future events.

As the above examples illustrate,  there is an impor tant consequence 

of studying cognition and be hav ior from the perspective of a normative 

theory of sentient be hav ior. Such theory does not start by assembling sepa-

rate cognitive functions, such as perception, decision- making, and plan-

ning. Rather, it starts by providing a complete solution to the prob lems 

that organisms have to solve and then analyzing the solution to derive 

implications about cognitive functions. For example, which mechanisms 

permit a living organism or artificial creature (e.g., a robot) to perceive the 

world, remember it, or plan (Verschure et al. 2003, 2014; Verschure 2012; 

Pezzulo, Barsalou et al. 2013; Krakauer et al. 2017)? This is an impor tant 
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move as the taxonomies of cognitive functions— used in psy chol ogy and 

neuroscience textbooks— largely inherit from early philosophical and psy-

chological theories (sometimes called Jamesian categories). Despite their 

 great heuristic value, they may be quite arbitrary—or they may not corre-

spond to separate cognitive and neural pro cesses (Pezzulo and Cisek 2016, 

Buzsaki 2019, Cisek 2019). Indeed,  these Jamesian categories may be can-

didates for how our generative models explain our engagement with the 

sensorium—as opposed to explaining that engagement. For example, the 

solipsistic hypothesis that “I am perceiving” is just my explanation for cur-

rent states of affairs that include my belief updating.

Adopting a normative perspective may also help in identifying formal 

analogies between cognitive phenomena studied in dif fer ent domains. 

One example is the trade- off between exploration and exploitation, which 

appears in vari ous guises (Hills et  al. 2015). This trade- off is often studied 

during foraging, when creatures must choose between exploiting previous 

successful plans and exploring novel (potentially better) ones. However, the 

same trade- off occurs during memory search and deliberation with  limited 

resources (e.g., time limitations or search effort), when creatures have the 

choice between exploiting their current best plan versus investing more time 

and cognitive effort to explore additional possibilities. Characterizing  these 

apparently disconnected phenomena in terms of  free energy can potentially 

reveal deep similarities (Friston, Rigoli et al. 2015; Pezzulo, Cartoni et al. 2016; 

Gottwald and Braun 2020).

Fi nally, in addition to a unified perspective on psychological phenom-

ena, Active Inference offers a principled means of understanding the cor-

responding neural computations. In other words, it offers a pro cess theory 

that connects cognitive pro cessing to (expected) neuronal dynamics. Active 

Inference assumes that every thing that  matters about brains, minds, and 

be hav ior can be described in terms of the minimization of variational  free 

energy. In turn, this minimization has specific neural signatures (in terms of, 

e.g., message passing or brain anatomy) that can be empirically validated.

In the rest of this chapter, we explore some implications of Active Infer-

ence for psychological functions—as if we  were sketching a psy chol ogy 

textbook. For each of  these functions, we also highlight some points of 

contact (or divergence) between Active Inference and other popu lar theo-

ries in the lit er a ture.
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10.4 Predictive Brains, Predictive Minds, and Predictive Pro cessing

I have this picture of pure joy

it’s of a child with a gun

he’s aiming straight in front of himself,

shooting at something that  isn’t  there.

— Afterhours, “Quello che non c’è” (Something that  isn’t  there)

Traditional theories of brain and cognition emphasize feedforward trans-

ductions from external stimuli to internal repre sen ta tions and then motor 

actions. This has been called a “sandwich model,” as every thing that is 

in between stimuli and responses is assigned the label “cognitive” (Hurley 

2008). In this perspective, the main function of the brain is to transform 

incoming stimuli into contextually appropriate responses.

Active Inference departs significantly from this view by emphasizing 

predictive and goal- directed aspects of brain and cognition. In psycho-

logical terms, Active Inference creatures (or their brains) are probabilistic 

inference machines, which continuously generate predictions based on their 

generative models.

Self- evidencing creatures use their predictions in two fundamental ways. 

First, they compare predictions with incoming data to validate their hypoth-

eses (predictive coding) and—at a slower timescale— revise their models 

(learning). Second, they enact predictions to guide the ways they gather 

data (Active Inference). By  doing so, Active Inference creatures fulfill two 

imperatives: epistemic (e.g., visually exploring places where salient informa-

tion is pre sent that can resolve uncertainty about hypotheses or models) 

and pragmatic (e.g., moving to locations where preferred observations such 

as rewards can be secured). The epistemic imperative renders both percep-

tion and learning active pro cesses, whereas the pragmatic imperative renders 

be hav ior goal directed.

10.4.1 Predictive Pro cessing

This predictive-  and goal- centric view of brain— and cognition—is closely 

related to (and provided inspiration for) predictive pro cessing (PP): an emerg-

ing framework in philosophy of mind and epistemology, which sees pre-

diction as central to brain and cognition and appeals to concepts of 

“predictive brains” or “predictive minds” (Clark 2013, 2015; Hohwy 2013). 
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Sometimes PP theories appeal to the specific functioning of Active Infer-

ence and some of its constructs, such as generative models, predictive 

coding,  free energy, precision control, and Markov blankets, but they 

sometimes appeal to other constructs, such as coupled inverse and for-

ward models, which are not part of Active Inference. Therefore, the term 

predictive pro cessing is used in a broader (and less constrained) sense com-

pared to Active Inference.

Predictive pro cessing theories have attracted considerable attention in 

philosophy, given their potential for unification in many senses: across mul-

tiple domains of cognition, including perception, action, learning, and psy-

chopathology; from lower (e.g., sensorimotor) to higher levels of cognitive 

pro cessing (e.g., psychological constructs); from  simple biological organisms 

to brains, individuals, and social and cultural constructs. Another appeal 

of PP theories is that they make use of conceptual terms, such as beliefs 

and surprise, which speak to a psychological level of analy sis familiar to phi-

los o phers (with the caveat that sometimes  these terms may have technical 

meanings that differ from common usage).

Yet, as the interest in PP grows, it has become apparent that phi los o phers 

have dif fer ent opinions on its theoretical and epistemological implications. 

For example, it has been interpreted in internalist (Hohwy 2013), embod-

ied or action- based (Clark 2015), and enactivist and nonrepre sen ta tional 

terms (Bruineberg et  al. 2016, Ramstead et  al. 2019). The debate around 

 these conceptual interpretations goes beyond the scope of this book.

10.5 Perception

You  can’t depend on your eyes when your imagination is out of focus.

— Mark Twain

Active Inference considers perception as an inferential pro cess based on a 

generative model of how sensory observations are generated. Bayes’ rule 

essentially inverts the model to compute a belief about the hidden state of 

the environment, given the observations. This idea of perception- as- inference 

dates back to Helmholtz (1866) and was often reproposed in psy chol ogy, com-

putational neuroscience, and machine learning (e.g., analysis- by- synthesis) 

(Gregory 1980, Dayan et al. 1995, Mesulam 1998, Yuille and Kersten 2006). 

This generative modeling approach has been demonstrated to be effective in 
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facing challenging perceptual prob lems, such as breaking text- based CAPT-

CHAs (George et al. 2017).

10.5.1 Bayesian Brain Hypothesis

The most prominent con temporary expression of this idea is the Bayes-

ian brain hypothesis, which has been applied to several domains such as 

decision- making, sensory pro cessing, and learning (Doya 2007). Active Infer-

ence provides a normative foundation to  these inferential ideas by deriv-

ing them from the imperative of minimizing variational  free energy. As 

the same imperative extends to action dynamics, Active Inference naturally 

models active perception and the ways in which organisms actively sample 

observations to test their hypotheses (Gregory 1980).  Under the Bayesian 

brain agenda, instead, perception and action are modeled in terms of dif-

fer ent imperatives (where action requires Bayesian decision theory; see 

section 10.7.1).

More broadly, the Bayesian brain hypothesis refers to a  family of approa-

ch  es that are not necessarily integrated and often make dif fer ent empirical 

predictions.  These include, for example, the computational- level proposal 

that the brain performs Bayes- optimal sensorimotor and multisensory inte-

gration (Kording and Wolpert 2006), the algorithmic- level proposal that 

the brain implements specific approximations of Bayesian inference, such 

as decision- by- sampling (Stewart et al. 2006), and the neural- level proposals 

about the specific ways in which neural populations may perform proba-

bilistic computations or encode probability distributions— for example, as 

samples or probabilistic population codes (Fiser et al. 2010, Pouget et al. 

2013). At each level of explanation,  there are competing theories on the 

field. For example, it is common to appeal to approximations of exact 

Bayesian inference to explain deviations from optimal be hav ior, but dif fer-

ent works consider dif fer ent (and not always compatible) approximations, 

such as dif fer ent sampling approaches. More broadly, the relations between 

proposals at dif fer ent levels are not always straightforward. This is  because 

Bayesian computations can be realized (or approximated) in multiple algo-

rithmic ways, even without explic itly representing probability distributions 

(Aitchison and Lengyel 2017).

Active Inference provides a more integrated perspective that connects 

normative princi ples and pro cess theories. At the normative level, its central 
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assumption is that all pro cesses minimize variational  free energy. The corre-

sponding pro cess theory for inference uses a gradient descent on  free energy, 

which has clear neurophysiological implications, explored in chapter 5 

(Friston, FitzGerald et  al. 2016). More broadly, one can start from the 

princi ple of  free energy minimization to derive implications about brain 

architectures.

For example, the canonical pro cess model of perceptual inference (in 

continuous time) is predictive coding. Predictive coding was initially pro-

posed as a theory of hierarchical perceptual pro cessing by Rao and Ballard 

(1999) to explain a range of documented top- down effects, which  were dif-

ficult to reconcile with feedforward architectures as well as known physio-

logical facts (e.g., the existence of forward, or bottom-up, and backward, or 

top- down, connections in sensory hierarchies). However, predictive coding 

can be derived from the princi ple of  free energy minimization,  under some 

assumptions, such as the Laplace approximation (Friston 2005). Further-

more, Active Inference in continuous time can be constructed as a directed 

extension of predictive coding into the domain of action—by endowing a 

predictive coding agent with motor reflexes (Shipp et al. 2013). This leads 

us to the next point.

10.6 Action Control

If you  can’t fly then run, if you  can’t run then walk, if you  can’t walk then crawl, 

but what ever you do you have to keep moving forward.

— Martin Luther King

In Active Inference, action pro cessing is analogous to perceptual pro-

cessing, as both are guided by forward predictions— exteroceptive and 

proprioceptive, respectively. It is the (proprioceptive) prediction that “my 

hand grasps the cup” that induces a grasping movement. The equivalence 

between action and perception exists also at the neurobiological level: the 

architecture of the motor cortex is or ga nized in the same way as the sensory 

cortex—as a predictive coding architecture, with the exceptions that it can 

influence motor reflexes in the brain stem and spine (Shipp et al. 2013) 

and that it receives relatively  little ascending input. Motor reflexes per-

mit controlling movement by setting “equilibrium points” along a desired 
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trajectory—an idea that corresponds to the equilibrium point hypothesis 

(Feldman 2009).

Importantly, initiating an action— like grasping a cup— requires regula-

tion of the precision (inverse variance) of prior beliefs and sensory streams 

appropriately. This is  because the relative values of  these precisions deter-

mine the way in which a creature manages the conflict between its prior 

belief (that it holds the cup) and its sensory input (signaling that it does 

not). An imprecise prior belief about grasping a cup can be easily revised in 

the light of conflicting sensory evidence— producing a change of mind and 

no action. Rather, when the prior belief dominates (i.e., has higher preci-

sion), it is maintained even in the face of conflicting sensory evidence— and 

it induces a grasping action to resolve the conflict. To ensure that this is the 

case, action initiation induces a transient sensory attenuation (or down- 

weighting sensory prediction errors). Failure of this sensory attenuation can 

have maladaptive consequences, such as the failure to initiate or control 

movements (Brown et al. 2013).

10.6.1 Ideomotor Theory

In Active Inference, action stems from (proprioceptive) predictions and 

not motor commands (Adams, Shipp, and Friston 2013). This idea connects 

Active Inference to ideomotor theory of action: a framework to understand 

action control that dates back to William James (1890) and the  later theo-

ries of “event coding” and “anticipatory behavioural control” (Hommel 

et al. 2001, Hoffmann 2003). Ideomotor theory suggests that action- effect 

links (similar to forward models) are key mechanisms in the architecture 

of cognition. Importantly,  these links can be used bidirectionally. When 

they are used in the action- effect direction, they permit generating sensory 

predictions; when they are used in the effect- action direction, they permit 

selecting actions that achieve desired perceptual consequences— implying 

that actions are selected and controlled on the basis of their predicted con-

sequences (hence the term ideo + motor). This anticipatory view of action 

control is supported by a body of lit er a ture that documents the effects 

of (anticipated) action consequences on action se lection and execution 

(Kunde et al. 2004). Active Inference provides a mathematical character-

ization of this idea that also includes additional mechanisms, such as the 

importance of precision control and sensory attenuation, which are not 

fully investigated in (but are compatible with) ideomotor theory.
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10.6.2 Cybernetics

Active Inference is closely related to cybernetic ideas about the purposeful, 

goal- directed nature of be hav ior and the importance of (feedback- based) 

agent- environment interactions, as exemplified by the TOTE (Test, Oper-

ate, Test, Exit) and related models (Miller et al. 1960; Pezzulo, Baldassarre 

et al. 2006). In both TOTE and Active Inference, the se lection of actions 

is determined by the discrepancy between a preferred (goal) state and the 

current state.  These approaches diverge from  simple stimulus- response rela-

tionships, as more commonly assumed in behaviorist theory and compu-

tational frameworks like reinforcement learning (Sutton and Barto 1998).

The notion of action control in Active Inference is particularly akin to 

perceptual control theory (Powers 1973). Central to perceptual control theory 

was the notion that what is controlled is a perceptual state, not a motor 

output or action. For example, while driving, what we control— and keep 

stable over time in the face of disturbances—is our reference or desired 

velocity (e.g., 90 mph), as signaled by the speedometer, whereas the actions 

we select for this (e.g., accelerating or decelerating) are more variable and 

context dependent. For example, depending on the disturbance (e.g., wind, 

a steep road, or other cars), we would need to  either accelerate or decelerate 

to maintain the reference velocity. This view implements William James’s 

(1890) suggestion that “ humans achieve stable goals via flexible means.”

While in both Active Inference and perceptual control theory it is a per-

ceptual (and specifically a proprioceptive) prediction that controls action, 

the two theories differ in how control is operated. In Active Inference but 

not perceptual control theory, action control has anticipatory or feedfor-

ward aspects, based on generative models. In contrast, perceptual control 

theory assumes that feedback mechanisms are largely sufficient to control 

be hav ior, whereas trying to predict a disturbance, or exerting feedforward 

(or open- loop) control, is worthless. However, this objection was mainly 

intended to address the limitations of control theories that use inverse- 

forward models (see next section).  Under Active Inference, generative or 

forward models are not used to predict a disturbance but to predict  future 

(desired) states and trajectories to be fulfilled by acting— and to infer the 

latent cause of perceptual events.

Fi nally, another impor tant point of contact between Active Inference and 

perceptual control theory is the way they conceptualize control hierarchies. 

Perceptual control theory proposes that higher hierarchical levels control 
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lower hierarchical levels by setting their reference points or set- points (i.e., 

what they have to achieve) by leaving them  free to select the means to 

achieve them rather than by setting or biasing the actions that the lower 

levels have to perform (i.e., how to operate). This stands in contrast with 

most theories of hierarchical and top- down control, in which higher levels 

 either directly select plans (Botvinick 2008) or bias the se lection of actions 

or motor commands at lower hierarchical levels (Miller and Cohen 2001). 

Similar to perceptual control theory, in Active Inference one can decompose 

hierarchical control in terms of a (top- down) cascade of goals and subgoals, 

which can be autonomously achieved at the appropriate (lower) levels. Fur-

thermore, in Active Inference, the contribution of goals represented at dif-

fer ent levels of the control hierarchy can be modulated (precision weighted) 

by motivational pro cesses, in such a way that the more salient or urgent 

goals are prioritized (Pezzulo, Rigoli, and Friston 2015, 2018).

10.6.3 Optimal Control Theory

The way Active Inference accounts for action control is significantly dif fer-

ent from other models of control in neuroscience, such as optimal control 

theory (Todorov 2004, Shadmehr et al. 2010). This framework assumes that 

the brain’s motor cortex selects actions using a (reactive) control policy 

that maps stimuli to responses. Active Inference, instead, assumes that the 

motor cortex conveys predictions, not commands.

Furthermore, while both optimal control theory and Active Inference 

appeal to internal models, they describe internal modeling in dif fer ent 

ways (Friston 2011). In optimal control,  there is a distinction between two 

kinds of internal models: inverse models encode stimulus- response contin-

gencies and select motor commands (according to some cost function), 

whereas forward models encode action- outcome contingencies and provide 

inverse models with simulated inputs to replace noisy or delayed feedback, 

hence  going beyond a pure feedback control scheme. Inverse and forward 

models can also operate in a loop that is detached from external action- 

perception (i.e., when inputs and outputs are suppressed) to support inter-

nal, “what if” simulations of action sequences. Such internal simulations of 

action have been linked to vari ous cognitive functions, such as planning, 

action perception, and imitation in social domains ( Jeannerod 2001, Wolpert 

et al. 2003) as well as vari ous disorders of movement and psychopatholo-

gies (Frith et al. 2000).
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In contrast to the forward- inverse modeling scheme, in Active Inference 

forward (generative) models do the heavy lifting of action control, whereas 

inverse models are minimalistic and often reduce to  simple reflexes resolved 

at the peripheral level (i.e., in the brain stem or spinal cord). Action is ini-

tiated when  there is a difference between anticipated and observed states 

(e.g., desired, current arm positions)— that is, a sensory prediction error. 

This means a motor command is equivalent to a prediction made by the 

forward model as opposed to something computed by an inverse model as 

in optimal control. The sensory (more precisely, proprioceptive) prediction 

error is resolved by an action (i.e., arm movement). The gap to be filled by 

action is considered so small that it does not require a sophisticated inverse 

model but a much simpler motor reflex (Adams, Shipp, and Friston 2013).1 

What renders a motor reflex simpler than an inverse model is that it does 

not encode a mapping from inferred states of the world to action but a 

much simpler mapping between action and sensory consequences. See 

Friston, Daunizeau et al. (2010) for further discussion.

Another crucial difference between optimal motor control and Active 

Inference is that the former uses a notion of cost or value function to moti-

vate action, whereas the latter replaces it with the Bayesian notion of prior 

(or prior preference, implicit in expected  free energy)—as we discuss in the 

next section.

10.7 Utility and Decision- Making

Action expresses priorities.

— Mahatma Gandhi

The notion of a cost or value function of states is central in many fields, such 

as optimal motor control, economic theories of utility maximization, and 

reinforcement learning. For example, in optimal control theory, the optimal 

control policy for a reaching task is often defined as the one that minimizes 

a specific cost function (e.g., is smoother or has minimum jerk). In rein-

forcement learning prob lems, such as navigating in a maze that includes 

one or more rewards, the optimal policy is the one that permits maximizing 

(discounted) reward while also minimizing movement costs.  These prob-

lems are often solved using the Bellman equation (or the Hamilton- Jacobi- 

Bellman equation in continuous time), whose general idea is that the value 
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of a decision can be decomposed in two parts: the immediate reward and 

the value of the remaining part of the decision prob lem. This decomposition 

affords the iterative procedure of dynamic programming, which is at the core 

of control theory and reinforcement learning (RL) (Bellman 1954).

Active Inference differs from the above approach in two main ways. First, 

Active Inference does not consider utility maximization alone but the broader 

objective of (expected)  free energy minimization, which also includes addi-

tional (epistemic) imperatives, such as the disambiguation of current state 

and novelty seeking (see figure 2.5).  These additional objectives are some-

times added on to classical rewards— for example, as a “novelty bonus” 

(Kakade and Dayan 2002) or “intrinsic reward” (Schmidhuber 1991, Oudeyer 

et  al. 2007, Baldassarre and Mirolli 2013, Gottlieb et  al. 2013)— but they 

arise automatically in Active Inference, enabling it to resolve exploration- 

exploitation trade- offs implicit in many decisions. The reason for this is that 

 free energies are functionals of beliefs, which means we are in the realm of 

belief optimization as opposed to external reward functions. This is essen-

tial in explorative prob lems, wherein success depends on resolving as much 

uncertainty as pos si ble.

Second, in Active Inference, the notion of cost is absorbed into the prior. 

The prior (or prior preference) specifies an objective for control— for exam-

ple, a trajectory to follow or an endpoint to reach. Using priors to encode 

preferred observations (or sequences) may be more expressive than using 

utilities (Friston, Daunizeau, and Kiebel 2009). Using this method, find-

ing the optimal policy is recast as a prob lem of inference (of a sequence of 

control states that realize the preferred trajectory) and does not require a 

value function or the Bellman equation— although can appeal to a simi-

lar  recursive logic (Friston, Da Costa et al. 2020).  There are at least two 

fundamental differences between the ways priors and value functions are 

normally used in Active Inference and RL, respectively. First, RL methods 

use value functions of states or of state- action pairs— whereas Active Infer-

ence uses priors over observations. Second, value functions are defined in 

terms of the expected return of being in a state (or performing an action in 

a state) following a specific policy— that is, the sum of  future (discounted) 

rewards obtained by starting in the state and then executing the policy. 

In contrast, in Active Inference, priors do not usually sum  future rewards, 

nor do they discount them. Rather, something analogous to the expected 

return only emerges in Active Inference when the expected  free energy 
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of a  policy is calculated. The implication is that expected  free energy is 

the closest analogue to the value function. However, even this differs in 

the sense that expected  free energy is a functional of beliefs about states, 

not a function of states. Having said this, it is pos si ble to construct pri-

ors that resemble value functions of states in RL— for example, by caching 

expected  free energy calculations in  these states (Friston, FitzGerald et al. 

2016; Maisto, Friston, and Pezzulo 2019).

Furthermore, absorbing the notion of utility into the prior has an impor-

tant theoretical consequence: priors play the role of goals and render the 

generative model biased—or optimistic, in the sense that the creature 

believes it  will encounter preferred outcomes. It is this optimism that under-

writes inferred plans that achieve desired outcomes in Active Inference; a 

failure of this sort of optimism may correspond to apathy (Hezemans et al. 

2020). This stands in contrast with other formal approaches to decision- 

making, such as Bayesian decision theory, which separate the probability 

of events from their utility. Having said this, this distinction is somewhat 

superficial, as a utility function can always be rewritten as encoding a prior 

belief, consistent with the fact that be hav iors that maximize a utility func-

tion are a priori (and by design) more probable. From one (slightly tauto-

logical) deflationary perspective, this is the definition of utility.

10.7.1 Bayesian Decision Theory

Bayesian decision theory is a mathematical framework that extends the ideas 

of the Bayesian brain (discussed above) to the domains of decision- making, 

sensorimotor control, and learning (Kording and Wolpert 2006, Shadmehr 

et al. 2010, Wolpert and Landy 2012). Bayesian decision theory describes 

decision- making in terms of two distinct pro cesses. The first pro cess uses 

Bayesian computations to predict the probability of  future (action-  or policy- 

dependent) outcomes, and the second pro cess defines the preference over 

plans, using a (fixed or learned) utility or cost function. The final decision 

(or action se lection) pro cess integrates both streams, thus selecting (with 

higher probability) the action plan that has the higher probability of yield-

ing the higher reward. This stands in contrast to Active Inference, in which 

the prior distribution directly signals what is valuable for the organism (or 

what has been valuable during evolutionary history). However, parallels 

could be drawn between the two streams of Bayesian decision theory and 

the optimization of variational and expected  free energy, respectively.  Under 
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Active Inference, the minimization of variational  free energy affords accu-

rate (and  simple) beliefs about the state of the world and its likely evolution. 

The prior belief that expected  free energy  will be minimized through policy 

se lection incorporates the notion of preferences.

In some circles,  there are concerns about the status of Bayesian decision 

theory. This follows from the complete class theorems (Wald 1947, Brown 

1981) that say for any given pair of decisions and cost functions,  there 

exist some prior beliefs that render the decisions Bayes optimal. This means 

that  there is an implicit duality or degeneracy when dealing separately with 

prior beliefs and cost functions. In one sense, Active Inference resolves this 

degeneracy by absorbing utility or cost functions into prior beliefs in the 

form of preferences.

10.7.2 Reinforcement Learning

Reinforcement learning (RL) is an approach to solving Markov decision 

prob lems that is popu lar in both artificial intelligence and the cognitive sci-

ences (Sutton and Barto 1998). It focuses on how agents learn a policy (e.g., 

pole balancing strategy) by trial and error: by trying out actions (e.g., move 

to the left) and receiving positive or negative reinforcements, depending on 

action success (e.g., pole balanced) or failure (e.g., pole fallen).

Active Inference and RL address overlapping sets of prob lems but differ 

in many re spects mathematically and conceptually. As noted above, Active 

Inference dispenses with the notions of reward, value functions, and Bell-

man optimality that are key to reinforcement learning approaches. Further-

more, the notion of policy is used differently in the two frameworks. In RL a 

policy denotes a set of stimulus- response mappings that need to be learned. 

In Active Inference, a policy is part of the generative model: it denotes a 

sequence of control states that need to be inferred.

Reinforcement learning approaches are plentiful, but they can be sub-

divided into three main families. The first two methods try to learn good 

(state or state- action) value functions, albeit in two dif fer ent ways.

Model- free methods of RL learn value functions directly from experience: 

they perform actions, collect rewards, update their value functions, and 

use them to update their policies. The reason they are called model- free is 

 because they do not use a (transition) model that permits predicting  future 

states—of the sort used in Active Inference. Instead, they implicitly appeal 

to simpler kinds of models (e.g., state- action mappings). Learning value 

functions in model- free RL often involves computing reward prediction 
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errors, as in the popu lar temporal- difference rule. While Active Inference 

often appeals to prediction errors,  these are state prediction errors (as  there 

is no notion of reward in Active Inference).

Model- based methods of RL do not learn value functions or policies directly 

from experience. Rather, they learn a model of the task from experience, 

use the model to plan (simulate pos si ble experiences), and update value 

functions and policies from  these simulated experiences. While both Active 

Inference and reinforcement learning appeal to model- based planning, they 

use it differently. In Active Inference, planning is the computation of the 

expected  free energy for each policy, not a means to update value functions. 

Arguably, if the expected  free energy is seen as a value functional, it could 

be said that inferences drawn using the generative model are used to update 

this functional— offering a point of analogy between  these approaches.

The third  family of RL approaches, policy gradient methods, tries to optimize 

policies directly, without intermediate value functions, which are central to 

both model- based and model- free RL.  These methods start from pa ram e-

terized policies, able to generate (for example) movement trajectories, and 

then optimizes them by changing the par ameters to increase (decrease) the 

likelihood of a policy if the trajectory results in a high (low) positive reward. 

This approach relates policy gradient methods to Active Inference, which 

also dispenses with value functions (Millidge 2019). However, the general 

objective of policy gradients (maximizing long- term cumulative reward) dif-

fers from Active Inference.

Besides the formal differences between Active Inference and RL,  there 

are also several impor tant conceptual differences. One difference regards 

how the two approaches interpret goal- directed and habitual be hav ior. In 

the animal learning lit er a ture, goal- directed choices are mediated by the 

(prospective) knowledge of the contingency between an action and its out-

come (Dickinson and Balleine 1990), whereas habitual choices are not pro-

spective and depend on simpler (e.g., stimulus- response) mechanisms. A 

popu lar idea in RL is that goal- directed and habitual choices correspond to 

model- based and model- free RL, respectively, and that  these are acquired in 

parallel and continuously compete to control be hav ior (Daw et al. 2005).

Active Inference instead maps goal- directed and habitual choices to dif-

fer ent mechanisms. In Active Inference (in discrete time), policy se lection is 

quintessentially model- based and hence fits the definition of goal- directed, 

deliberative choices. This is similar to what happens in model- based RL, but 

with a difference. In model- based RL, actions are selected in a prospective 
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manner (using a model) but are controlled in a reactive way (using stimulus- 

response policies); in Active Inference, actions can be controlled in a proac-

tive way— through fulfilling proprioceptive predictions (on action control, 

see section 10.6).

In Active Inference, habits can be acquired by executing goal- directed 

policies and then caching information about which policies are successful 

in which contexts. The cached information can be incorporated as a prior 

value of policies (Friston, FitzGerald et al. 2016; Maisto, Friston, and Pezzulo 

2019). This mechanism permits executing policies that have a high prior 

value (in a given context) without deliberation. This can be thought of sim-

ply as observing “what I do” and learning that “I am the sort of creature that 

tends to do this” over multiple exposures to a task. In contrast to model- free 

RL, where habits are acquired in de pen dently of goal- directed policy se lection, 

in Active Inference habits are acquired by repeatedly pursuing goal- directed 

policies (e.g., by caching their results).

In Active Inference, goal- directed and habitual mechanisms can cooper-

ate rather than only compete. This is  because the prior belief over policies 

depends on both a habitual term (a prior value of policies) and a delibera-

tive term (expected  free energy). Hierarchical elaborations of Active Inference 

suggest that reactive and goal- directed mechanisms could be arranged in a 

hierarchy rather than as parallel pathways (Pezzulo, Rigoli, and Friston 2015).

Fi nally, it is worth noting that Active Inference and RL differ subtly in 

how they conceive be hav ior and its  causes. RL originates from behavior-

ist theory and the idea that be hav ior results from trial- and- error learning 

mediated by reinforcement. Active Inference assumes instead that be hav ior 

is the result of an inference. This leads us to the next point.

10.7.3 Planning as Inference

In the same way that it is pos si ble to cast perceptual prob lems as prob-

lems of inference, it is also pos si ble to cast control prob lems in terms of 

(approximate) Bayesian inference (Todorov 2008). In keeping with this, in 

Active Inference, planning is seen as an inferential pro cess: the inference of 

a sequence of control states of the generative model.

This idea is closely related to other approaches, which include control- as- 

inference (Rawlik et al. 2013, Levine 2018), planning- as- inference (Attias 2003, 

Botvinick and Toussaint 2012), and risk- sensitive and KL control  (Kappen et al. 

2012). In  these approaches, planning proceeds through inferring a posterior 
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distribution over actions, or sequences of actions, using a dynamic genera-

tive model that encodes probabilistic contingencies between states, actions, 

and  future (expected) states. The best action or plan can be inferred by 

conditioning the generative model on observing  future rewards (Pezzulo 

and Rigoli 2011, Solway and Botvinick 2012) or optimal  future trajectories 

(Levine 2018). For example, it is pos si ble to clamp (i.e., fix the value of ) the 

 future desired state in the model and then infer the sequence of actions that 

is more likely to fill the gap from the current state to the  future desired state.

Active Inference, planning- as- inference, and other related schemes use 

a prospective form of control, which starts from an explicit repre sen ta tion 

of  future, to- be- observed states rather than from a set of stimulus- response 

rules or policies, as is more typically done in optimal control theory and 

RL. However, the specific implementations of control-  and planning- as- 

inference vary along at least three dimensions— namely, what form of infer-

ence they use (e.g., sampling or variational inference), what they infer (e.g., 

a posterior distribution over actions or action sequences), and the goal of 

inference (e.g., maximizing the marginal likelihood of an optimality condi-

tion or the probability of getting reward).

Active Inference takes a unique perspective on each of  these dimensions. 

First, it uses a scalable approximate scheme— variational inference—to solve 

the challenging computational prob lems that arise during planning- as- 

inference. Second, it affords model- based planning, or the inference of a 

posterior over control states— which correspond to action sequences or 

policies, not single actions.2 Third, to infer action sequences, Active Infer-

ence considers the expected  free energy functional, which mathematically 

subsumes other widely used planning- as- inference schemes (e.g., KL con-

trol) and can  handle ambiguous situations (Friston, Rigoli et al. 2015).

10.8 Be hav ior and Bounded Rationality

The wise are instructed by reason, average minds by experience, the stupid by 

necessity and the brute by instinct.

— Marcus Tullius Cicero

Be hav ior in Active Inference automatically combines multiple components: 

deliberative, perseverative, and habitual (Parr 2020). Imagine a person who 

is walking to a shop close to her  house. If she predicts the consequences 
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of her actions (e.g., turning left or right), she can elaborate a good plan to 

reach the shop. This deliberative aspect of be hav ior is provided by expected 

 free energy, which is minimized when one acts in a way to achieve preferred 

observations (e.g., being in the shop). Note that expected  free energy also 

includes a drive to reduce uncertainty, which can manifest in deliberation. 

For example, if the person is unsure about the best direction, she can move 

to an appropriate vantage point, from which she can find the way to the 

shop easily, even if this implies a longer route. In short, her plans acquire 

epistemic affordance.

If the person is less able to engage in deliberation (e.g.,  because she is dis-

tracted), she may continue walking  after reaching the shop. This perseverative 

aspect of be hav ior is provided by variational  free energy, which is minimized 

when one gathers observations that are compatible with current beliefs, 

including beliefs about the current course of actions. The sensory and pro-

prioceptive observations that the person gathers provide evidence for “walk-

ing” and hence may determine perseveration in the absence of deliberation.

Fi nally, another  thing the person could do— when she is less able to 

deliberate—is select the usual plan to go home, without thinking about 

it. This habitual component is provided by the prior value of policies. 

This could allocate high probability to a plan to go home— a plan she has 

observed herself enacting multiple times in the past— and can become 

dominant if not superseded by deliberation.

Note that deliberative, perseverative, and habitual aspects of be hav ior 

coexist and can be combined in Active Inference. In other words, one can 

infer that, in this situation, a habit is the most likely course of action. This 

is dif fer ent from “dual theories,” which assume that we are driven by two 

separate systems, one rational and one intuitive (Kahneman 2017). The 

mixture of deliberative, perseverative, and habitual aspects of be hav ior 

plausibly depends on contextual conditions, such as the amount of experi-

ence and the amount of cognitive resources one can invest in deliberative 

pro cesses that may have a high complexity cost.3

The impact of cognitive resources on decision- making has been widely 

studied  under the rubric of bounded rationality (Simon 1990). The core idea 

is that while an ideal rational agent should always fully consider the out-

comes of its actions, a bounded rational agent has to balance the costs, effort, 

and timeliness of computation— for example, the information- processing 

costs of deliberating the best plan (Todorov 2009, Gershman et al. 2015).
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10.8.1  Free Energy Theory of Bounded Rationality

Bounded rationality has been cast in terms of Helmholtz  free energy minimi-

zation: a thermodynamic construct that is strictly related to the notion of 

variational  free energy as used in Active Inference; see Gottwald and Braun 

(2020) for details. The “ free energy theory of bounded rationality” formu-

lates the trade- offs of action se lection with  limited information- processing 

capabilities in terms of two components of  free energy: energy and entropy 

(see chapter 2). The former represents the expected value of a choice (an 

accuracy term), and the latter represents the costs of deliberation (a complex-

ity term). What is costly during deliberation is decreasing the entropy (or 

complexity) of one’s beliefs before a choice to render them more precise 

(Ortega and Braun 2013, Zénon et al. 2019). Intuitively, the choice would 

be more accurate (and potentially entail higher utility) with a more pre-

cise posterior belief, but  because increasing the precision of beliefs has a 

cost, a bounded decision- maker has to find a compromise—by minimizing 

 free energy. The same trade- offs emerge in Active Inference, thus produc-

ing forms of bounded rationality. The notion of bounded rationality also 

resonates with the use of a variational bound on evidence (or marginal 

likelihood) that is a definitive aspect of Active Inference. In sum, Active 

Inference provides a model of (bounded) rationality and optimality, where 

the best solution to a given prob lem results from the compromise between 

complementary objectives: accuracy and complexity.  These objectives stem 

from a normative ( free energy minimization) imperative that is richer than 

classical objectives (e.g., utility maximization) usually considered in eco-

nomic theory.

10.9 Valence, Emotion, and Motivation

Consider your origins: you  were not made to live as brutes, but to follow virtue 

and knowledge.

— Dante Alighieri

Active Inference focuses on (negative)  free energy as a mea sure of fitness 

and the capacity of an organism to realize its goals. While Active Infer-

ence proposes that creatures act to minimize their  free energy, this does 

not mean that they ever have to compute it. Generally, it is sufficient to 

deal with the gradients of the  free energy. By analogy, we do not need to 
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know our altitude to find the top of a hill but can simply follow the slope 

upward. However, some have suggested creatures may model how their  free 

energy changes over time. Proponents of this hypothesis suggest that it 

might permit characterizations of phenomena like valence, emotion, and 

motivation.

On this view, it has been proposed that emotional valence, or the positive 

or negative character of emotions, can be conceived as the rate of change 

(first time- derivative) of  free energy over time ( Joffily and Coricelli 2013). 

Specifically, when a creature experiences an increase in its  free energy over 

time, it may assign a negative valence to the situation; whereas when it 

experiences a decrease of its  free energy over time, it may assign it a positive 

valence. Extending this line of thought to long- term dynamics of  free energy 

(and second time- derivatives), it may be pos si ble to characterize sophisti-

cated emotional states; for example, the relief of passing from a phase of low 

valence to a phase of high valence, or the disappointment of passing from 

a phase of high valence to a phase of low valence. Monitoring  free energy 

dynamics (and the emotional states they elicit) may permit adapting the 

behavioral strategies or learning rates to long- term environmental statistics.

It may seem a bit of a leap to assume a second generative model whose 

role is to monitor the  free energy of the first. However,  there is another 

way in which  these ideas can be interpreted. An in ter est ing formalization 

of  these perspectives rests on thinking about what  causes rapid changes 

in  free energy. As it is a functional of beliefs, a rapid change in  free energy 

must be due to fast belief updating. The key determinant of this speed is 

precision, which acts as a time- constant in the dynamics of predictive cod-

ing. Interestingly, this ties in with the notion of higher derivatives of the 

 free energy, as precision is the negative of the second derivative (i.e., the 

curvature of a  free energy landscape). However, this begs the question as to 

why we should associate precision with valence. The answer comes from 

noticing that precision is inversely related to ambiguity. The more precise 

something is, the less ambiguous its interpretation. Choosing a course of 

action that minimizes expected  free energy also means minimizing ambi-

guity and therefore maximizing precision.  Here we see a direct association 

between high order derivatives of the  free energy, its rate of change, and 

motivated be hav ior.

Expectations about (increases or decreases of )  free energy may play moti-

vational roles and incentivize be hav ior, too. In Active Inference, a surrogate 
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expectation about changes (increases or decreases) of  free energy is the pre-

cision of beliefs about policies. This again highlights the importance of this 

second order statistic. For example, a highly precise belief signals that one 

has found a good policy— that is, a policy that can be confidently expected 

to minimize  free energy. Interestingly, the precision of (beliefs about) poli-

cies has been linked to dopamine signaling (FitzGerald, Dolan, and Friston 

2015). From this perspective, stimuli that increase the precision of beliefs 

about policies trigger dopamine bursts— which may indicate their incen-

tive salience (Berridge 2007). This perspective may help shed light on the 

neurophysiological mechanisms linking expectations of goal or reward 

achievement to increases in attention (Anderson et al. 2011) and motiva-

tion (Berridge and Kringelbach 2011).

10.10 Homeostasis, Allostasis, and Interoceptive Pro cessing

 There is more wisdom in your body than in your deepest philosophy.

— Friedrich Nietz sche

A creature’s generative model is not just about the external world but also— 

and perhaps even more importantly— about the internal milieu. A genera-

tive model of a body’s inside (or interoceptive schema) has a dual role: to 

explain how interoceptive (bodily) sensations are generated and to ensure 

the correct regulation of physiological par ameters (Iodice et al. 2019), like 

body temperature or sugar levels in the blood. Cybernetic theories (touched 

on in section 10.6.2) assume that a central objective of living organisms is 

maintaining homeostasis (Cannon 1929)— ensuring that physiological par-

ameters remain within  viable ranges (e.g., body temperature never becomes 

too high)— and that homeostasis can only be achieved by exerting a suc-

cessful control over the environment (Ashby 1952).

This form of homeostatic regulation can be achieved in Active Infer-

ence by specifying the  viable ranges of physiological par ameters as priors 

over interoceptive observations. Interestingly, homeostatic regulation can 

be achieved in multiple, nested ways. The simplest regulatory loop is the 

engagement of autonomic reflexes (e.g., vasodilation), when certain par-

ameters are (expected to be) out of range— for example, when body temper-

ature is too high. This autonomic control can be constructed as interoceptive 

inference: an Active Inference pro cess that operates on interoceptive streams 
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rather than proprioceptive streams, as in the case of externally directed 

actions (Seth et al. 2012, Seth and Friston 2016, Allen et al. 2019). For this, 

the brain may use a generative model that predicts interoceptive and physi-

ological streams and triggers autonomic reflexes to correct interoceptive 

prediction errors (e.g., a surprisingly high body temperature). This is analo-

gous to the way motor reflexes are activated to correct proprioceptive pre-

diction errors and steer externally directed actions.

Active Inference extends beyond  simple autonomic loops: it can correct 

the same interoceptive prediction error (high body temperature) in increas-

ingly sophisticated ways (Pezzulo, Rigoli, and Friston 2015). It can use 

predictive, allostatic strategies (Sterling 2012, Barrett and Simmons 2015, 

Corcoran et al. 2020) that go beyond homeostasis and preemptively control 

physiology in an allostatic fashion before interoceptive prediction errors 

are triggered— for example, finding shade before overheating. Another 

predictive strategy entails mobilizing resources before expected excursions 

from physiological setpoints— for example, increasing cardiac output before 

a long run in anticipation of increased oxygen demands. That requires 

modifying the priors over interoceptive observations dynamically,  going 

beyond homeostasis (Tschantz et  al. 2021). Eventually, predictive brains 

can develop sophisticated goal- directed strategies, such as ensuring that 

one brings cold  water to the beach, meeting the same imperative (control-

ling body temperature) in richer and more effective ways.

Biological and interoceptive regulation may be crucial for affect and emo-

tional pro cessing (Barrett 2017). During situated interactions, the brain’s 

generative model constantly predicts not just what  will happen next but 

also what the consequences for interoception and allostasis are. Interocep-

tive streams— elicited during the perception of external objects and events— 

imbue them with an affective dimension, which signals how good or bad they 

are for the creature’s allostasis and survival, hence making them “meaning-

ful.” If this view is correct, then disorders of this interoceptive and allostatic 

pro cessing may engender emotional dysregulation and vari ous psychopatho-

logical conditions (Pezzulo 2013; Barrett et al. 2016; Maisto, Barca et al. 2019; 

Pezzulo, Maisto et al. 2019).

 There is an emerging bedfellow for interoceptive inference— namely, emo-

tional inference. In this application of Active Inference, emotions are con-

sidered part of the generative model: they are just another construct or 

hypothesis that the brain employs to deploy precision in deep generative 
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models. From the perspective of belief updating, this means anxiety is just 

a commitment to the Bayesian belief “I am anxious” that best explains the 

prevailing sensory and interoceptive queues. From the perspective of acting, 

the ensuing (interoceptive) predictions augment or attenuate vari ous preci-

sions (i.e., covert action) or enslave autonomic responses (i.e., overt action). 

This may look much like arousal, which confirm the hypothesis that “I am 

anxious.” Usually, emotional inference entails belief updating that is domain 

general, assimilating information from both interoceptive and exteroceptive 

sensory streams— hence the intimate relationship between emotion, intero-

ception, and attention in health (Seth and Friston 2016; Smith, Lane et al. 

2019; Smith, Parr, and Friston 2019) and disease (Peters et  al. 2017, J.  E. 

Clark et al. 2018).

10.11 Attention, Salience, and Epistemic Dynamics

True ignorance is not the absence of knowledge, but the refusal to acquire it.

— Karl Popper

Given the number of times we have referred to precision and expected  free 

energy in this chapter alone, it would be negligent not to devote a  little space 

to attention and salience.  These concepts recur throughout psy chol ogy, hav-

ing been subject to numerous redefinitions and classifications. Sometimes 

 these terms are used to refer to synaptic gain control mechanisms (Hillyard 

et al. 1998), which preferentially select some sensory modality or subset of 

channels within a modality. Sometimes they refer to how we orient our-

selves, through overt or covert action, to gain more information about the 

world (Rizzolatti et al. 1987; Sheliga et al. 1994, 1995).

Although the uncertainty afforded by the many meanings of attention 

underwrites some of the epistemic attractiveness of this field of study,  there 

is also value in resolving the attendant ambiguity. One of the  things offered 

by a formal perspective on psy chol ogy is that we do not need to worry about 

this ambiguity. We can operationally define attention as the precision asso-

ciated with some sensory input. This neatly maps to the concept of gain 

control, as sensations we infer to be more precise  will have greater influ-

ence over belief updating than  those inferred to be imprecise. The construct 

validity of this association has been demonstrated in relation to psychologi-

cal paradigms, including the famous Posner paradigm (Feldman and Friston 
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2010). Specifically, responding to a stimulus at a location in visual space that 

is afforded a higher precision is faster than responding to stimuli in other 

locations.

This leaves the term salience in want of a similar formal definition. Typi-

cally, in Active Inference, we associate salience with expected information 

gain (or epistemic value): a component of the expected  free energy. Intui-

tively, something is more salient when we expect it to yield more informa-

tion. However, this defines salience in terms of an action or policy, while 

attention is an attribute of beliefs about sensory input. This fits with the 

notion of salience as overt or covert orienting. We saw in chapter 7 that we 

could further subdivide expected information gain into salience and novelty. 

The former is the potential to infer, while the latter is the potential to learn. 

An analogy that expresses the difference between attention and salience (or 

novelty) is the design and analy sis of a scientific experiment. Attention is 

the pro cess of selecting the highest quality data from what we have already 

mea sured and using  these to inform our hypothesis testing. Salience is the 

design of the next experiment to ensure the highest quality data.

We do not dwell on this issue to simply add another reclassification 

of attentional phenomena to the lit er a ture but to highlight an impor tant 

advantage in committing to a formal psy chol ogy.  Under Active Inference, 

it does not  matter if  others define attention (or any other construct) differ-

ently—as we can simply refer to the mathematical constructs in question 

and preclude any confusion. A final point of consideration is that  these 

definitions offer a  simple explanation for why attention and salience are so 

often conflated. Highly precise data are minimally ambiguous. This means 

that they should be afforded attention and that actions to acquire  these 

data are highly salient (Parr and Friston 2019a).

10.12 Rule Learning, Causal Inference, and Fast Generalization

Yesterday I was clever, so I wanted to change the world.  Today I am wise, so I am 

changing myself.

— Rumi

 Humans and other animals excel at making sophisticated causal inferences, 

learning abstract concepts and the causal relationships between objects, 

and generalizing from  limited experience—in contrast to current machine 
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learning paradigms, which require a large number of examples to attain 

similar per for mance. This difference suggests that current machine learning 

approaches, which are largely based on sophisticated pattern recognition, 

may not fully capture the ways  humans learn and think (Lake et al. 2017).

The learning paradigm of Active Inference is based on the development 

of generative models that capture the causal relations between actions, 

events, and observations. In this book, we have considered relatively  simple 

tasks (e.g., the T- maze example of chapter 7) that require unsophisticated 

generative models. In contrast, understanding and reasoning about com-

plex situations require deep generative models that capture the latent 

structure of the environment— such as hidden regularities that permit gen-

eralizing across a number of apparently dissimilar situations (Tervo et al. 

2016; Friston, Lin et al. 2017).

One  simple example of a hidden rule that governs sophisticated social 

interactions is a traffic intersection. Imagine a naïve person who observes 

a busy crossroad and has to predict (or explain) on which occasions pedes-

trians or cars cross the road. The person can accumulate statistics about the 

co- occurrence of events (e.g., a red car stopping and a tall man crossing; an 

old  woman stopping and a big car passing), but most are ultimately use-

less. The person can eventually discover some recurrent statistical patterns, 

such as that pedestrians cross the road soon  after all cars stop at a certain 

point on the road. This determination would be deemed sufficient in a 

machine learning setting if the task  were just to predict when pedestrians 

are about to walk, but it would not entail any understanding of the situa-

tion. In fact, it may even lead to the erroneous conclusion that the stopping 

of cars explains the movement of pedestrians. This sort of error is typical in 

machine learning applications that do not appeal to (causal) models— and 

cannot distinguish  whether the rain explains the wet grass or the wet grass 

explains the rain (Pearl and Mackenzie 2018).

On the other hand, inferring the correct hidden (e.g., traffic light) rule 

provides a deeper understanding of the causal structure of the situation 

(e.g., it is the traffic light that  causes the cars to stop and the pedestrians 

to walk). The hidden rule not only affords better predictive power but also 

renders inference more parsimonious, as it can abstract away from most 

sensory details (e.g., the color of cars). In turn, this permits generalizing to 

other situations, such as dif fer ent crossroads or cities, where most sensory 

details differ significantly— with the caveat that facing crossroads in some 
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cities, like Rome, may require more than looking at traffic lights. Fi nally, 

learning about traffic light rules may also enable more efficient learning in 

novel situations—or to develop what is called a “learning set” in psy chol-

ogy or a learning- to- learn ability in machine learning (Harlow 1949). When 

facing a crossroad where the traffic light is off, one cannot use the learned 

rule but may nevertheless have the expectation that  there is another, simi-

lar hidden rule in play— and this could help understanding what the traffic 

police officer is  doing.

As this  simple example illustrates, learning rich generative models—of 

the latent structure of the environment (aka structure learning)— affords 

sophisticated forms of causal reasoning and generalization. Scaling up 

generative models to address  these sophisticated situations is an ongoing 

objective in computational modeling and cognitive science (Tenenbaum 

et al. 2006, Kemp and Tenenbaum 2008). Interestingly,  there is a tension 

between current machine learning trends— wherein the general idea is “the 

bigger, the better”— and the statistical approach of Active Inference— which 

suggests the importance of balancing the accuracy of a model with its com-

plexity and to  favor simpler models. Model reduction (and the pruning of 

unnecessary par ameters) is not simply a way to avoid wasting resources—it 

is also an effective way to learn hidden rules, including during offline peri-

ods like sleep (Friston, Lin et al. 2017), perhaps manifesting in resting state 

activity (Pezzulo, Zorzi, and Corbetta 2020).

10.13 Active Inference and Other Fields: Open Directions

It has to start somewhere, it has to start sometime,

what better place than  here? What better time than now?

— Rage Against the Machine, “Guerrilla Radio”

In this book, we mainly focus on Active Inference models that address biolog-

ical prob lems of survival and adaptation. Yet Active Inference can be applied 

in many other domains. In this last section, we briefly discuss two such 

domains: social and cultural dynamics and machine learning and robotics. 

Addressing the former requires thinking about the ways in which multiple 

Active Inference agents interact and the emergent effects of such interaction. 

Addressing the latter requires understanding how Active Inference can be 

endowed with more effective learning (and inference) mechanisms to scale 
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up to more complex prob lems— but in a way that is compatible with the basic 

assumptions of the theory. Both are in ter est ing open directions for research.

10.13.1 Social and Cultural Dynamics

Many in ter est ing aspects of our ( human) cognition relate to social and 

cultural dynamics rather than individualistic perceptions, decisions, and 

actions (Veissière et al. 2020). By definition, social dynamics require mul-

tiple Active Inference creatures that engage in physical interactions (e.g., 

joint actions, such as playing team sports) or more abstract interactions 

(e.g., elections or social networking).  Simple demonstrations of inter- Active 

Inference between identical organisms already produced in ter est ing emer-

gent phenomena, such as the self- organization of  simple life forms that 

resist dispersion, the possibility to engage in morphoge ne tic pro cesses to 

acquire and restore a body form, and mutual coordinated prediction and 

turn taking (Friston 2013; Friston and Frith 2015a; Friston, Levin et  al. 

2015). Other simulations have addressed the ways in which creatures can 

extend their cognition to material artifacts and shape their cognitive niches 

(Bruineberg et al. 2018).

 These simulations capture only a fraction of the complexity of our social 

and cultural dynamics, but they illustrate the potential of Active Inference 

to expand from a science of individuals to a science of socie ties— and how 

cognition extends beyond our skulls (Nave et al. 2020).

10.13.2 Machine Learning and Robotics

The generative modeling and variational inference methods discussed in 

this book are widely used in machine learning and robotics. In  these fields, 

the emphasis is often on how to learn (connectionist) generative models—

as opposed to how to use them for Active Inference, the focus of this book. 

This is in ter est ing as machine learning approaches are potentially useful to 

scale up the complexity of the generative models and of the prob lems con-

sidered in this book— with the caveat that they may call on very dif fer ent 

pro cess theories of Active Inference.

While it is impossible to review  here the vast lit er a ture on generative 

modeling in machine learning, we briefly mention some of the most popu-

lar models, from which many variants have been developed. Two early 

connectionist generative models, the Helmholtz machine and the Boltzmann 

machine (Ackley et  al. 1985, Dayan et  al. 1995), provided paradigmatic 
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examples of how to learn the internal repre sen ta tions of a neural network 

in an unsupervised way. The Helmholtz machine is especially related to the 

variational approach of Active Inference, as it uses separate recognition and 

generative networks to infer a distribution over hidden variables and sample 

from them to obtain fictive data. The early practical success of  these meth-

ods was  limited. But afterward, the possibility to stack multiple (restricted) 

Boltzmann machines enabled learning of multiple layers of internal repre-

sen ta tions and was one of the early successes of unsupervised deep neural 

networks (Hinton 2007).

Two recent examples of connectionist generative models, variational auto-

encoders or VAEs (Kingma and Welling 2014) and generative adversarial net-

works or GANs (Goodfellow et al. 2014), are widely used in machine learning 

applications, such as recognizing or generating pictures and videos. VAEs 

exemplify an elegant application of variational methods to learning in gen-

erative networks. Their learning objective, the evidence lower bound (ELBO), 

is mathematically equivalent to variational  free energy. This objective enables 

learning of an accurate description of the data (i.e., maximizes accuracy) but 

also  favors internal repre sen ta tions that do not differ too much from their 

priors (i.e., minimizes complexity). The latter objective acts as a so- called 

regularizer, which helps to generalize and avoid overfitting.

GANs follow a dif fer ent approach: they combine two networks, a gen-

erative network and a discriminative network, which continuously compete 

during learning. The discriminative network learns to distinguish which 

example data produced by the generative network are real or fictive. The 

generative network tries to generate fictive data that fool (i.e., are misclassi-

fied by) the discriminative network. The race between  these two networks 

forces the generative network to improve its generative capabilities and 

produce high fidelity fictive data—an ability that has been widely exploited 

to generate, for example, realistic images.

The above generative models (and  others) can be used for control tasks. 

For example, Ha and Eck (2017) have used a (sequence- to- sequence) VAE 

to learn to predict pencil strokes. By sampling from the internal repre sen-

ta tion of the VAE, the model can construct novel stroke- based drawings. 

Generative modeling approaches have been used to control robot move-

ments, too. Some of  these approaches use Active Inference (Pio- Lopez et al. 

2016, Sancaktar et al. 2020, Ciria et al. 2021) or closely related ideas, but 

in a connectionist setting (Ahmadi and Tani 2019, Tani and White 2020).
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One of the main challenges in this domain is that robot movements 

are high dimensional and require (learning) sophisticated generative mod-

els. One in ter est ing aspect of Active Inference and related approaches is 

that the most impor tant  thing to be learned is a forward mapping between 

actions and sensory (e.g., visual and proprioceptive) feedback at the next 

time step. This forward mapping can be learned in vari ous ways: by autono-

mous exploration, by demonstration, or even by direct interaction with a 

 human— for example, a teacher (the experimenter) who guides the hands of 

the robot along a trajectory to the goal, hence scaffolding the acquisition of 

effective goal- directed actions (Yamashita and Tani 2008). The possibility to 

learn generative models in vari ous ways greatly expands the scope of robot 

skills that can be eventually achieved. In turn, the possibility to develop 

more advanced (neuro-) robots using Active Inference could be impor tant 

not just for technological but also for theoretical reasons. Indeed, some 

key aspects of Active Inference, such as the adaptive agent- environment 

interactions, the integration of cognitive functions, and the importance of 

embodiment, are naturally addressed in robotic settings.

10.14 Summary

Home is  behind, the world ahead,

and  there are many paths to tread

through shadows to the edge of night,

 until the stars are all alight.

— J. R. R. Tolkien, The Lord of the Rings

We started this book by asking  whether it is pos si ble to understand brain 

and be hav ior from first princi ples. We then introduced Active Inference as 

a candidate theory to meet this challenge. We hope that the reader has been 

convinced that the answer to our original question is yes. In this chapter, we 

considered the unified perspective that Active Inference offers on sentient 

be hav ior and what implications this theory has for familiar psychological 

constructs, such as perception, action se lection, and emotion. This gave us 

the opportunity to revisit the concepts introduced throughout the book 

and to remind ourselves of the fascinating questions still open for  future 

research. We hope this book provides a useful complement to related works 

on Active Inference, including on the one hand the philosophy (Hohwy 

2013, Clark 2015) and on the other hand the physics (Friston 2019a).
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We are now at the end of our journey. Our aim has been to offer an 

introduction to  those interested in using  these methods— both at concep-

tual and formal levels. However, it is impor tant to emphasize that Active 

Inference is not something that can be learned purely in theory. We encour-

age anyone who has enjoyed this book to think about pursuing it in prac-

tice. Impor tant rites of passage in theoretical neurobiology are trying to 

write down a generative model, experiencing the frustration when simula-

tions misbehave, and learning from violations of your prior beliefs when 

something unexpected happens.  Whether or not you choose to pursue this 

practice at a computational level, we hope that you  will reflect on it as 

you engage in Active Inference in day- to- day life. This may manifest in the 

compulsion to direct your eyes to resolve uncertainty about something in 

your peripheral vision. It may be in choosing to eat at a favorite restaurant 

to fulfill prior (gustatory) preferences. It may be in reducing the heat when 

the shower is too hot to ensure the temperature conforms to your model of 

how the world should be. Ultimately, we are confident that you  will con-

tinue to pursue Active Inference in some form.
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A.1 Introduction

This appendix offers an introduction (or a refresher) to the basic mathematical 

techniques employed throughout this book. We provide an introductory (but 

nonexhaustive) overview of four topics: linear algebra, Taylor series approxi-

mation, variational calculus, and stochastic dynamics. For each of  these tech-

niques, we refer to where it comes into play in the book. Our aim  here is 

to provide a focused introduction— with emphasis on building intuition as 

opposed to formal and rigorous proofs. The maths required to understand 

and use Active Inference is not complicated, but its multidisciplinary basis 

means it is often difficult to find resources that bring together the necessary 

prerequisites. We hope this appendix goes some way  toward remedying this.

A.2 Linear Algebra

A.2.1 The Basics

Linear algebra refers to a notation used to simply and concisely express com-

binations of multiplications and summations. It relies on matrices and vec-

tors comprising arrays of numbers in structures with multiple rows and 

columns (or multiple rows and a single column, for a vector). The ele ment 

of a matrix A in the ith row and jth column is referred to as Aij. The product 

A of two matrices B and C (or a matrix and vector) is defined as follows:

A = BC
⇒

Aij = BikCkjk∑  

(A.1)

Appendix A: Mathematical Background
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For this definition to hold, we need the number of columns of B to match the 

number of rows of C. However, let us instead say that the number of columns 

of B match the columns in C and we want to express the following sum:

Aij = BkiCkjk∑  (A.2)

How would we do this using linear algebraic notation? We need to appeal 

to another operation that swaps the subscripted indices of B (i.e., reflects 

the array such that the columns become rows and vice versa). This is the 

transpose operation, normally expressed using a superscript T:

BikT ! Bki
A = BTC ! B iC

⇒

Aij = BkiCkjk∑  

(A.3)

Equation A.3 shows how we can use the transpose operator to express the 

summation from equation A.2. The second line highlights an alternative 

notation using a dot operator. This notation is inspired by the fact that, 

when B and C have only one column each, equation A.3 reduces to a vector 

dot product.

Another useful operation is the trace operator. This takes the ele ments 

along the diagonal of a square matrix and sums them:

tr A[ ] ! Aiii∑  (A.4)

Part of the utility of a trace operator is afforded by the way we can permute 

ele ments in the trace of a matrix product:

tr ABC[ ] = AijBjkCkik∑j∑i∑
= CkiAijBjkj∑i∑k∑ = tr CAB[ ]

= BjkCkiAiji∑k∑j∑ = tr BCA[ ]
 

(A.5)

The main use we  will find for this identity in this book is when applied 

to scalar quantities. A scalar can be viewed as a matrix with only one row 

and one column. As such, we can apply a trace operator to it, but this  will 

not do anything—we get the same scalar out. This means that, if a matrix 

product gives rise to a scalar quantity, we can permute the terms as above. 
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For example, if we have a square matrix B with N columns and rows, and a 

vector c with N rows, we can use equation A.5 to show the following:

a = c i Bc

= tr cTBc[ ]
= tr BccT[ ]
= tr BC[ ]

C = c ⊗ c ! ccT  

(A.6)

This reexpresses a quadratic expression (first line) with the trace of the 

product of two matrices (penultimate line). The final line defines the outer 

product (in contrast to the inner dot product). Equation A.6 becomes par-

ticularly useful in the context of multivariate normal distributions, as we 

 will come to in section A.2.3.

The final concepts of linear algebra to be aware of are the inverse and 

determinant of a matrix. An inverse is defined as follows:

A−1 A   =  AA−1   =  I (A.7)

Equation A.7 says that the product of a matrix and its inverse is the iden-

tity matrix— a square matrix with ones along its main and zeros elsewhere. 

Multiplying any matrix by the identity matrix returns the original matrix, 

unchanged. It is the linear algebraic equivalent of scalar multiplication by 

1 (which could be interpreted as a 1- dimensional identity matrix). This 

means that if we multiply something by a matrix, and then by the inverse 

of that matrix, we end up with the original quantity.

The determinant is a useful quantity but one for which it is harder to 

develop a clear intuition. The only point at which it appears in this book is 

as part of the normalizing constant of a multivariate normal distribution. 

As such, it is worth knowing how it is calculated, but we  will not dwell on 

this concept. The determinant is defined recursively as follows:

A ! (−1)i−1A1i A\(1, i)i∑  
(A.8)

 Here, the notation A\(1, i) means the matrix A with row 1 and column i omit-

ted. For example:
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A =
A11 A12

A21 A22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A\(1,1) = A22

A\(1, 2) = A21

A = A11 A22 − A12 A21

= A11A22 − A12A21
 

(A.9)

This concludes our outline of the basic operations of linear algebra.

A.2.2 Derivatives

Differentiation of matrix and vector quantities follows directly from the 

application of standard calculus to each ele ment of a matrix. For example, 

if we have a matrix B whose ele ments are functions of a scalar x, the deriva-

tive of B with re spect to x is as follows:

A(x) = ∂xB(x)

⇒ A(x)ij = ∂xB(x)ij

∂x !
∂
∂x  

(A.10)

However, a few impor tant definitions and identities  will be useful in 

understanding the technical details in this book. The first is how to take 

derivatives with re spect to nonscalar quantities. If we have a vector quan-

tity b that is a function of another vector c, the derivative of b with re spect 

to c is a matrix:

A = ∂cb(c)

⇒ Aij = ∂cj b(c)i  
(A.11)

We  will also make use of the gradient operator, which deals with deriva-

tives with re spect to a vector. This is defined as follows:

∇b = ∂b1
∂b2

∂b3
!⎡

⎣
⎤
⎦
T

a = ∇bx(b)

⇒
ai = ∂bi x(b)  

(A.12)

228 Appendix A
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The definition of the gradient operator as a vector of derivative operators 

also affords a concise definition of a related quantity— the divergence of a 

vector function:

∇a i b(a) = ∂aib(a)ii∑  
(A.13)

 There are many useful derivative identities for linear algebraic quantities, 

but we  will not attempt to provide a comprehensive overview; for readers 

who wish to delve further, we recommend The Matrix Cookbook (Petersen 

and Pedersen 2012).  Here, we limit ourselves to two identities that  will be 

particularly useful. The first is the gradient of a quadratic quantity:

d(a) = ∇a b(a) iCb(a)( )
⇒

d(a)i = ∂ai b(a)j Cjkb(a)kk∑j∑
= ∂ai b(a)j( )Cjk b(a)k + ∂ai b(a)k( )Cjkb(a)j( )k∑j∑
⇒

d(a) = ∇a b(a) i C + CT( )b(a)  

(A.14)

 Here (and throughout this book), the transposition implied by the dot 

notation is applied prior to the gradient operator:

∇ab(a) i !( ) ! ∇ab(a)T !( ) ≠ ∇ab(a)( )T !( )  (A.15)

The identity in equation A.14 is used in the derivation of the belief- 

update equations for predictive coding in chapter 4. A second useful iden-

tity is the derivative of the same quantity with re spect to the matrix, C:

D(a) = ∇C b(a) iCb(a)( )
⇒

D(a)ij = ∂Cij b(a)kCklb(a)ll∑k∑ = b(a)i b(a)j

⇒
D(a) = b(a)⊗ b(a)  

(A.16)

 Here we have used the gradient operator with a matrix subscript to indicate 

the following:

∇C =
∂C11

∂C12
!

∂C21
∂C22

! "

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥  

(A.17)

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



In appendix B, we  will see how equation A.16 aids in the estimation of the 

covariance matrix for a posterior probability.

A.2.3 Probabilities

In the context of probabilistic reasoning,  these linear algebraic identities 

come into play in two impor tant situations. The first is when the random 

variable we are reasoning about (i.e., the support of a probability distribu-

tion) is a vector quantity. The second is when the probability distribution 

itself is described by sufficient statistics that are vectors, matrices, or higher 

order tensor quantities.1 An example of both is the multivariate normal 

distribution, defined as follows:

p(x) = 1
(2π )k Π( )1

2
e−

1
2(x−η) iΠ(x−η)

dim(x) = k  

(A.18)

 Here, x is a k- dimensional vector. This means the mode, η, is also a 

k- dimensional vector. The precision, Π, is the inverse of the covariance— a 

k × k dimensional symmetric matrix expressing the dispersion of probability 

mass around the mode. This appears twice in equation A.18: in the normal-

izing constant (as a determinant) and in the exponent. Note that the qua-

dratic term in the exponent is a scalar quantity and is therefore susceptible 

to the identity in equation A.6. This  will be impor tant in appendix B.

When dealing with categorical probability distributions, the sufficient 

statistics of a distribution are simply vectors, matrices, or tensors of prob-

abilities. For example, the probability distribution over the numbers a person 

could roll on a six- sided die is given by a 6- dimensional vector, with each 

ele ment of the vector expressing the probability of that number.  Things get 

more in ter est ing in the context of conditional probabilities. For variables o 

and s, which each take one of several pos si ble values, we can write the condi-

tional probability of o given s as a matrix, A, whose ele ments are as follows:

P(o   =  i | s   =  j )   =  Aij (A.19)

This says that the probability that o takes its ith pos si ble value if s takes its 

jth pos si ble value is given by the ele ment of A in the ith row and jth column. 

Taking this further, we can define conditional probabilities in which  there 

are multiple items in the conditioning set, leading to a tensor structure:

P(o   =  i | s1   =  j, s2   =  k, s3   =  l,  . . .)   =  Aijkl . . .  (A.20)

230 Appendix A
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 Here we could specify an arbitrary number of variables in the condition-

ing set, leading to an arbitrary number of indices, and a tensor of arbitrary 

order. We set out an example of a (T- maze) model in chapter 7 that makes 

use of a probability tensor of order 3. The princi ples of this model general-

ize to any higher order. For a tensor A, we  will consistently use the dot nota-

tion of equation A.3 to mean summation with re spect to the first index:

A = B i x

⇒

Ajklm . . . = Bijklm . . . xii∑
 

(A.21)

An advantage of this expression of distributions as arrays of numbers 

is that we can use the definitions in sections A.2.1– A.2.2 to find concise 

expressions for related quantities. For example, we  will often need to com-

pute information- theoretic quantities like entropies for probability distri-

butions. An entropy is a negative expected (average) log probability. If we 

take the expression in equation A.19, we can find a  simple form for its 

entropy as follows:

H P(o |s)[ ] ! −EP(o|s) ln P(o |s)[ ]
Hj ! H P(o |s = j)[ ]

= − P(o = i |s = j)ln P(o = i |s = j)
i∑

⇒
H = −diag(A i lnA)  

(A.22)

In equation A.22, diag is an operation that takes the diagonal ele ments of a 

matrix and stacks them into a vector. This illustrates an example in chap-

ter  4 of defining the expected  free energy, in which an appeal to linear 

algebraic notation offers a concise description of how  these quantities may 

be calculated.

A.3 Taylor Series Approximation

A.3.1 Introduction

Often, it is con ve nient to simplify the form of a function ( f  ( x )) through 

an approximation (indicated by ^) that is valid in a local region (e.g., the 

region around a point, a). If we  were only interested in the function at a, we 
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could replace the function with a constant equal to the function evaluated 

at that point:

f̂ (x) = f (a)  (A.23)

However, this is only valid when x is exactly equal to a. In order to make 

the approximation valid in the region immediately surrounding a, we can 

add a term to ensure that a small change in x is accompanied by a change 

in the value of the function consistent with the gradient at a:

f̂ (x) = f (a) + ε ∂x f (x)
x=a

ε ! x − a
 

(A.24)

When x is equal to a, the ε term is zero, consistent with equation A.23. In 

addition, the first derivative of the original function and of the approxima-

tion are equal, when evaluated at a.

Pursuing this approach, we can add an additional term that accounts for 

the rate of change of the gradient (i.e., the curvature) so that the approxi-

mation becomes valid for a greater deviation from a. We do not have to 

stop  here; we could add an arbitrary number of terms to match each suc-

cessive derivative between the original function and the approximation:

f̂ (x) = f (a) + ε ∂x f (x)
x=a +

1
2
ε 2∂x2 f (x)

x=a + . . .

= 1
n! ε n ∂xn f (x)

n=0∑ x=a  

(A.25)

Equation A.25 shows the Taylor series expansion in one dimension. How-

ever, we can generalize this to the multivariate case (where x is a vector) 

with the following expression:

f (x) ≈ f (a)+ ε i ∇x f (x)
x=a +

1
2
ε i ∇x ∇x f (x)( )T

x=a
ε + . . .  (A.26)

The quantity ∇x(∇x f  ( x ))T is known as a Hessian matrix.

Increasing the number of terms in the series improves the approxima-

tion. For our purposes, we need not go beyond the second order (quadratic) 

expansion. In the following subsections, we highlight the places in this 

book in which this approximation has been exploited.  These include the 

Laplace approximation, which underwrites the predictive coding schemes 

described in chapters 4 and 8 and the variational Laplace scheme used for 

232 Appendix A
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model- based data analy sis described in chapter 9. In addition, the general-

ized coordinates of motion used to model continuous trajectories (box 4.2) 

can be interpreted as Taylor series coefficients. We  will unpack  these appli-

cations in sections A.3.2 and A.3.3, respectively.

A.3.2 The Laplace Approximation

An impor tant application of a Taylor series approximation in probabilistic 

inference is its use in the Laplace approximation. This refers to the use of a 

Gaussian distribution to approximate a probability distribution (   p) in the 

region surrounding its mode ( μ). If we expand the log of a probability dis-

tribution using equation A.26, we get the following:

ln p(x) ≈ ln p(µ) + ε i ∇x ln p(x)
x=µ + 1

2
ε i ∇x ∇x ln p(x)( )T

x=µ
ε

ε ! x − µ  

(A.27)

This is simply equation A.26 but with f ( x )   =  ln p( x ) and a   =  μ. The first 

term  after the approximate equality is constant with re spect to x so may 

be absorbed into a normalizing constant. The second term dis appears, as 

the gradient of the log probability at its mode is zero. Exponentiating both 

sides leaves us with this:

p(x) ≈ 1
Z
e
−1

2
ε iC −1ε

= N (µ,C−1)

C−1 ! −∇x ∇x ln p(x)( )T
x=µ  

(A.28)

Equation A.28 says that when we approximate a log probability using a qua-

dratic function, near its mode, the associated probability density is Gauss-

ian. This is the Laplace approximation applied to a probability distribution. 

However, we can also apply the Laplace approximation to a  free energy func-

tional. To provide some intuition for this, we start with a  free energy func-

tional (see chapter 4):

F[q,y]= Eq(x)[ lnq(x) − ln p(y,x)]  (A.29)

Equation  A.29 expresses  free energy in terms of the expected difference 

between two log probabilities. The q density is an approximate posterior 

probability. The p density is a generative model, describing how hidden states 
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( x ) give rise to data ( y). As in equation A.27, we can apply a Taylor series 

expansion to the two log probabilities. Starting with the variational density, 

we have this:

lnq(x) ≈ lnq(µ) + (x − µ) i ∇x lnq(x)
x=µ

0
! "## $##

+ 1
2 (x − µ) i ∇x ∇x lnq(x)( )T

x=µ
(x − µ)

⇒ q(x) ≈ N µ,∑−1( )
∑−1 = −∇x ∇x lnq(x)( )T

x=µ

µ = arg max
x

q(x)  

(A.30)

Applying the expectation from equation A.29 to equation A.30, we get this:

Eq(x) lnq(x)[ ] ≈ lnq(µ) − 1
2 Eq(x) (x − µ) i ∑−1(x − µ)[ ]

= lnq(µ) − 1
2 tr ∑−1Eq(x) (x − µ)(x − µ)T[ ]

∑
! "#### $####

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= − k
2 ln2π − 1

2 ln ∑ − k
2

= − 1
2 ln 2πe( )k ∑  

(A.31)

 Here, k is the dimensionality of x. The move from the first to the second 

line depends on the trace identity in equation A.6. The first two terms in the 

third line come from the definition of a multivariate normal distribution 

(equation A.18). Equation  A.31 expresses the first term of equation A.27 

 under the Laplace assumption. The second term of equation A.27 can simi-

larly be expanded around μ:

ln p(y,x) ≈ ln p(y,µ) + (µ − x) i ∇x ln p(y,x)
x=µ

+ 1
2

(µ − x) i ∇x ∇x ln p(y,x)( )T
x=µ

(µ − x)

Eq(x)[ ln p(y,x)]≈ ln p(y,µ) + (µ − Eq(x)[x])
0

! "## $##
∇x ln p(y, x)

x=µ

+ 1
2
tr Eq(x)[(µ − x)(µ − x)T ]∇x ∇x ln p(y,x)( )T

x=µ

⎡
⎣⎢

⎤
⎦⎥

= ln p(y,µ) + 1
2
tr ∑∇x ∇x ln p(y, x)( )T

x=µ

⎡
⎣⎢

⎤
⎦⎥  

(A.32)
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The final equality uses the fact that, if q is a normal distribution, its mean 

is also its mode. Substituting equations A.31 and A.32 back into equation 

A.27, we get the Laplace  free energy:

F[q,y]≈ − 1
2

ln 2πe( )k ∑ − ln p(y,µ) − 1
2
tr ∑∇x ∇x ln p(y,x)( )T

x=µ

⎡
⎣⎢

⎤
⎦⎥  

(A.33)

The trace operator in the last term can be ignored when x is 1- dimensional. 

The useful  thing about this formulation is that if we set the derivative 

of the  free energy with re spect to the posterior precision to zero, we find 

the following:2

∂∑ F[q,y]= 0 ⇔∑−1 = −∇x ∇x ln p(y,x)( )T
x=µ  

(A.34)

This means that the precision of the posterior is the negative curvature 

of the log probability of states and data evaluated at the posterior mode. 

As such, minimizing  free energy does not require explicit optimization of 

the precision— this may be computed analytically from the posterior mean. 

Furthermore, substitution of A.34 into A.33 reveals that the only term in 

the  free energy that depends on the posterior mean is the log probability 

over data and states. For details of how this is done to perform inference in 

continuous state- space models, see chapter 4.

A.3.3 Generalized Coordinates of Motion

In addition to being central to the Laplace approximation, the Taylor series 

approximation plays another impor tant role in Active Inference. This is in 

the use of generalized coordinates of motion to represent beliefs about a tra-

jectory through time. In brief, this means drawing inferences not only about 

the position of a variable ( x ) but also its velocity ( x′ ), acceleration ( x″ ), and 

subsequent temporal derivatives.  These implicitly represent an approxima-

tion to the trajectory that can be made explicit through the following Taylor 

series:

x(t ) ≈ x(τ ) + ε ′x (t )
t =τ +

1
2
ε 2 ′′x (t )

t =τ + . . .

ε = t − τ  

(A.35)

This additionally means we can account for structure in the covariance 

of random fluctuations, as is necessary in dealing with  these fluctuations in 

biological systems (where fluctuations are themselves generated by dynami-

cal pro cesses). We  will discuss this further in section A5. For now, we simply 
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note that a probability density over the generalized coordinates of motion 

is equivalent to a distribution over local trajectories constructed by treating 

the coordinates as coefficients of a Taylor series expansion.

A.4 Variational Calculus

A.4.1 Functional Derivatives

 Because Active Inference deals with optimizing beliefs (probability distribu-

tions), it is often necessary to talk about the minimization of functionals 

(functions of functions) with re spect to functions. This calls for the concept 

of a functional (i.e., variational) derivative. The basic prob lem is finding 

the function (     f       ) that minimizes a functional (S ), normally expressed as an 

integral3 of a function that includes f :

φ(x) = arg min
f

S[f (x)]

S[f (x)]! L(f (x),x)dx
x1

x2

∫
 

(A.36)

If we pa ram e terize the function in terms of an arbitrary function ( g ) that 

is zero at the extremes of the integral and multiply this by a small number 

(u), we can take the derivative of S with re spect to u:

f (x,u) ! φ(x) + ug(x)

∂u S[f (x,u)]= ∂uL(f (x,u),x)dx
x1

x2

∫

= ∂u f (x,u)∂fL(f (x,u),x)dx
x1

x2

∫

= g(x)∂fL(f (x,u),x)dx
x1

x2

∫  

(A.37)

When u is zero, f is the function that minimizes the integral. This means 

equation A.37 should be zero when evaluated at u   =  0. The condition that 

must be satisfied for f to minimize S is then as follows:

g(x)∂fL(f (x),x)dx
f =φ

x1

x2

∫ = 0
 

(A.38)
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For equation A.38 to be true for any arbitrary g( x ), the following is implied:4

δ f S ! ∂fL = 0  (A.39)

Note that, in a physics setting, L  may include the gradient of f in addition 

to the function itself. The same steps outlined above then give rise to the 

Euler- Lagrange equation:

δ f S ! ∂fL − d
dx

∂ ′f L = 0

′f ! ∂x f  

(A.40)

Depending on  whether L  includes the gradient, equations A.39 and A.40 

express the notion of a variational (aka functional) derivative.

A.4.2 Variational Bayes

Variational Bayes follows in a relatively straightforward way from the above 

if we set f  to be a  factor of an approximate posterior distribution and S to 

be a  free energy functional:

f (x) = qi(xi )

q(x) = qi(xi )
i
∏

L(qi(xi ),xi ) = q(x)(lnq(x) − ln p(y,x))dxj≠ i∫
S[q(x)]= F[q(x),y]  

(A.41)

The second line  here expresses a mean- field approximation, in which the 

approximate posterior is factorized over the variables x. This is often used 

for reasons of computational tractability. However, this is one of many 

choices of form for the approximate posterior. Applying equation A.39, we 

find the form of the approximate posterior that minimizes the  free energy 

(omitting constants):

δqi F [q,y]= lnqi(xi ) − qj(xj )ln p(y,x)
j≠ i
∏ dxj≠ i∫

δqi F [q,y]= 0 ⇔

lnqi(xi ) = Eq\i[ln p(y,x)]  

(A.42)

The notation \i should be read as “all  factors except for the ith  factor.” 

Equation A.42 is central to an inference scheme known as variational mes-

sage passing (Winn and Bishop 2005, Dauwels 2007). This works by opti-

mizing each  factor of q in de pen dently and relies on p being relatively sparse 
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(i.e., not  every xi depends on  every other xj ). To gain some intuition for this, 

consider what happens with an (arbitrary) example:

p(y,x) = p(y |x1)p(x1 |x2 ,x3)p(x3)p(x2 |x4 )p(x4 )

⇒
lnq(x1) =

= Eq(x2 )q(x3 )q(x4 ) ln p(y |x1) + ln p(x1 |x2 ,x3) + ln p(x3)p(x2 |x4 )p(x4 )
constant w.r.t. x1

! "#### $####

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

lnq(x2 ) =

= Eq(x1)q(x3 )q(x4 ) ln p(x1 |x2 ,x3) + ln p(x2 |x4 )+ ln p(y |x1)p(x3)p(x4 )
constant w.r.t. x2

! "#### $####

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

!
 

(A.43)

Equation A43 shows what happens when we substitute the density in the 

first line into equation A.42 for the first two  factors of q. Omitting constant 

terms, we have this:

lnq(x1) = ln p(y |x1) + Eq(x2 )q(x3 ) ln p(x1 |x2 ,x3)[ ]
lnq(x2 ) = Eq(x1)q(x3 ) ln p(x1 |x2 ,x3)[ ] + Eq(x4 ) ln p(x2 |x4 )[ ]

!  

(A.44)

The terms in the expectation have been simplified by noting the following:

E p(b) f (a)[ ] = p(b)f (a)db∫ = f (a) p(b)db∫
=1

! "# $#
= f (a)

 
(A.45)

This accounts for the simplicity of variational message passing, in which we 

only need take account of a small subset of beliefs ( those about the Markov 

blanket— see box 4.1) in order to update each belief.

A.5 Stochastic Dynamics

A.5.1 Stochastic Differential Equations

 There are a few places in this book where we refer to ideas from the theory 

of random dynamical systems. In chapter 3, for instance, we highlight the 

importance of a steady- state distribution to which a random system tends 

over time and the relationship between  these dynamics and the notion of 

self- evidencing. In chapters 4 and 8, we outline how a continuous state- space 

model may be formulated in terms of stochastic differential equations. 
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Although this is a fascinating topic (Yuan and Ao 2012), a full dissection 

of the subtleties of defining stochastic pro cesses is outside the scope of this 

book. However, it is worth briefly unpacking what we mean by a stochastic 

differential equation. Put simply, it is a differential equation that is aug-

mented by a random term (ω ):

x
. = f (x) +ω

ω ∼ N (0, 1
2 Γ

−1 )  
(A.46)

The random term  here is chosen to be normally distributed. It has a mean 

of zero, such that the most likely value for the rate of change of x is simply 

f ( x ). The interpretation of equation A.46 is sometimes a  little tricky. The 

best way to dispel any ambiguity is to see it as the limiting case of a dis-

cretized scheme:

Δx = f (x)Δτ +ω Δτ( )1
2

Δτ → 0 ⇒ x
.
= f (x) +ω  

(A.47)

Note that if the variance of ω varies with x  there are multiple discretizations 

we could appeal to. The most common choices correspond to Ito and Strato-

novich interpretations of a stochastic equation. However, we assume a fixed 

variance throughout this book— which ensures  these interpretations lead to 

identical results. For the purpose of defining a generative model of the sort 

found in chapter 8, we just need the probability distribution describing the 

rate of change of x. From equation A.46, this is simply as follows:

p(x
.
|x) = N (f (x), 1

2 Γ −1)  (A.48)

This is the form that  will be found in the generative models used  here. This 

provides a summary of the distinction between a deterministic and a ran-

dom dynamical system. If we know the value of x in a deterministic system, 

then we know its velocity. In a stochastic system, knowing x tells us the 

distribution of pos si ble velocities we might expect.

A.5.2 Nonequilibrium Steady State

In chapter 3, we see that a system defined such that it descends some energy 

(or surprise) function maintains its form over time and persists at a (pos-

sibly nonequilibrium) steady state. We  will briefly unpack what this means 

 here, starting from the idea of a steady state and recovering the surprise- 

minimizing or “self- evidencing” (Hohwy 2016) dynamics. The starting point 
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is an alternative expression of the stochastic dynamics in equation A.46 in 

terms of a deterministic partial differential equation describing how the prob-

ability density changes over time. This is known as a Fokker- Planck equation 

(Risken 1996):

∂τ p(x) = ∇x i Γ∇x p(x) − f (x)p(x)( )  (A.49)

The Fokker- Planck equation lets us define a steady state simply by setting 

the partial derivative of the density with re spect to time to be zero:

∂τ p(x) = 0

⇒

∇x i Γ∇x p(x) − f (x)p(x)( ) = 0

⇒
f (x) = −(Γ −Q(x))∇x ℑ(x)

∇x i Q(x)∇x p(x)( ) = 0

ℑ(x) ! −ln p(x)  

(A.50)

The third equality  here5 is key, as it says that  those systems that maintain 

steady state must exhibit dynamics that (on average) minimize their sur-

prise (ℑ). The Q term allows for dynamics along the contours of the surprise, 

which neither increase nor decrease surprise. This expression underwrites 

the self- evidencing perspective of Active Inference and is central to the 

physics of sentient systems. We  will not dwell on this  here but refer readers 

to Friston (2019a) for a more comprehensive overview of the consequences 

of this treatment.

A.5.3 Generalized Coordinates of Motion

As we saw in section A.3.3, we can represent a short trajectory in terms of 

the coefficients of a Taylor series expansion in time. This raises an in ter est-

ing question when we translate this into the context of a stochastic setting. 

When specifying a continuous- time model in terms of generalized coordi-

nates of motion, how do we account for the covariance between the  orders 

of generalized motion? The answer is given in Cox and Miller (1965), which 

we summarize  here. A random pro cess is expressed in generalized coordi-

nates as a vector of the random fluctuations accompanying the flow, the 

rate of change of that flow, and subsequent temporal derivatives:

240 Appendix A

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



Mathematical Background 241

x
.∼ = !f ( !x) + !ω

!ω !

ω
′ω
′′ω
′′′ω
!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

ω [0]

ω [1]

ω [2]

ω [3]

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

(A.51)

The random fluctuations may be characterized as follows:

p( !ω ) = N (0, !Π)

E[ω [0](τ )]= 0

E[ω [0](τ ) iω [0](τ )]= ∑  

(A.52)

Their autocorrelation function is this:

ρ(h) ! ∑−1E[ω [0](τ ) iω [0](τ + h)]
Covariance

! "#### $####

 
(A.53)

We can multiply both sides of this equation by the variance to show that 

the covariance between the noise at two time- points may be factorized into 

an autocorrelation and a variance. We define the ith derivative of the ran-

dom fluctuations as this limiting case:

ω [i ](τ ,Δτ ) = ω [i−1](τ + Δτ ) −ω [i−1](τ )
Δτ  

(A.54)

Using equations A.52 and A.53, we can express the covariance between 

a variable and its first temporal derivative:

E[ω [1](τ ,Δτ ) iω [0](τ + h)]= 1
Δτ E ω [0](τ + Δτ ) −ω [0](τ )( )ω [0](τ + h)⎡⎣ ⎤⎦

= 1
Δτ ∑ ρ(h − Δτ ) − ρ(h)( )  

(A.55)

Taking the limit as the change in time tends to zero:

E[ω [1](τ ) iω [0](τ + h)]= ∑ ρ.(h)  (A.56)

Evaluating at h   =  0 gives us a covariance of zero, as the instantaneous veloc-

ity and position are orthogonal to one another (and the autocorrelation is 

at a maximum, so its temporal derivative is zero).

We can take this procedure one step further and evaluate the variance of 

the first derivative:
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E[ω [1](τ ,Δτ ) iω [1](τ + h,Δτ )]

= 1
Δτ 2 ∑E ω [0](τ + Δτ ) −ω [0](τ )( ) ω [0](τ + h + Δτ ) −ω [0](τ + h)( )⎡⎣ ⎤⎦

= ∑ 1
Δτ

1
Δτ ρ(h) − ρ(h − Δτ )( ) − 1

Δτ ρ(h + Δτ ) − ρ(h)( )( )  

(A.57)

Taking the limit as Δτ → 0, this is as follows:

E[ω [1](τ ) iω [1](τ + h)]= −∑ ρ.. (h)  (A.58)

Pursuing this procedure for subsequent derivatives allows us to compute 

the ele ments of the generalized precision matrix:

!Π = ∑−1 ⊗

1 0 ρ.. (0)

0 −ρ.. (0) 0

ρ.. (0) 0 ρ
....

(0)

"

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

−1

 

(A.59)

Choosing the autocorrelation function to be Gaussian, we have the following:

ρ(h) = e−1
2λh

2

ρ.(h) = −λρ(h)

ρ
..(h) = λ(λh2 − 1)ρ(h)

ρ
...(h) = λ2h(λh2 − 3)ρ(h)

ρ
....

(h) = λ2(λ2h4 − 6λh2 + 3)ρ(h)

ρ(0) = 1

ρ
..
(0) = 0

ρ
..
(0) = −λ

ρ
...(0) = 0

ρ
....

(0) = 3λ2  

(A.60)

The precision term (λ) can then be thought of as pa ram e terizing the smooth-

ness of the random fluctuations. This may itself be optimized in relation to 

data through minimization of  free energy.
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B.1 Introduction

In this appendix, we provide a mathematical summary of Active Inference. 

This supplements the equations in the mainchapters with details about 

where they come from and aims to fill in some of the intermediate steps 

omitted  there. This builds directly on the mathematical background of 

appendix A and deals with inference in partially observed Markov decision 

(POMDP) pro cesses and predictive coding architectures, and it touches on 

questions of structure learning and model reduction alluded to in the main 

text. Our aim is for this to be relatively self- contained, with par tic u lar focus 

on topics that frequently cause confusion. Readers should be reassured that 

it is not necessary to understand every thing in this appendix to be able to 

usefully apply Active Inference; this is more for  those who want greater 

technical detail.

B.2 Markov Decision Pro cesses

B.2.1 State Inference

When solving a POMDP prob lem, our aim is to select the appropriate course 

of action, or policy.  Under Active Inference, this is framed as an inference 

prob lem, in which we must find a posterior probability distribution over 

alternative policies. To calculate a posterior probability, we need two  things: 

the prior probability of policies (addressed in section B.2.2) and the likeli-

hood of observations given a policy. This section focuses on the latter.

The likelihood of observations given a policy is not straightforward to 

compute. This is  because a POMDP prob lem is structured so that policies (π ) 

Appendix B: The Equations of Active Inference
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influence trajectories (indicated by ~) of states (s) that influence outcomes 

(o) without a direct influence of policies on outcomes. The prob lem then 

involves a sum over trajectories of states to marginalize  these out and find 

a marginal likelihood of observations given policies:

P( !o |π ) = P( !o | !s)P( !s |π )
!s∑  

(B.1)

For any nontrivial state- space, this summation can be very challenging 

to compute, from a computational perspective. However, as we see in chap-

ter  2, we can approximate marginal likelihoods of this sort using a  free 

energy functional. Chapters 2–4 describe  free energy as a functional of two 

 things: approximate posterior beliefs (Q ) and a generative model (P). This 

lets us express the  free energy for a given policy as follows:

F(π ) = EQ ( !s|π )[ lnQ( !s |π ) − ln P( !o, !s |π )]≥ −ln P( !o |π )

Q !s |π( ) = arg min
Q

F(π )⇒ F(π ) ≈ −ln P( !o |π )
 

(B.2)

Equation B.2 tells us something  simple but impor tant. To be able to infer 

what to do, we need to approximate a marginal likelihood of a policy. To 

find a good approximation of this marginal likelihood, we need to optimize 

our beliefs about states  under that policy. In short, perceptual inference is 

mandated for planning to proceed. So how do we solve this prob lem practi-

cally? The answer is to appeal to the methods outlined in section A.4.2. By 

choosing explicit forms for the probability distributions in equation B.1, we 

can find a  simple expression for the  free energy:

Q( !s |π ) = Q(sτ |π )
τ∏ : Q(sτ |π ) = Cat(sπτ )

P( !o | !s) = P(oτ |sτ ) :
τ∏ P(oτ |sτ ) = Cat(A)

P( !s |π ) = P(s1) P(sτ +1|sτ ,π ):
τ∏ P(sτ +1|sτ ,π ) = Cat(Bπτ )

P(s1) = Cat(D)  

(B.3)

Briefly, the first line of equation B.3 defines beliefs about states in terms of 

a mean- field approximation (see equation A.41), factorized over time. Each 

time- point is associated with a belief about what the state would be on 

pursuing a policy, given by the vector sπτ, whose ele ments are the probabili-

ties of each alternative state. The trajectory of observations in the second 

line depends on a trajectory of hidden states, with the matrix (or tensor, if 
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the states are further factorized) A indicating the distribution over observa-

tions for each state. Similarly, the prior trajectory of states  under a model 

comprises the transition probabilities  under that policy (Bπτ) and the initial 

state probabilities (D). Substituting  these into the  free energy expression 

in Equation B.2, we arrive at the following expression for the  free energy 

 under a policy:

Fπ = sπ1 i (lnsπ1 − lnA i o1 − lnD) + sπτ i (lnsπτ − lnA i oτ − lnBπτsπτ −1)
τ =2
∑

 
(B.4)

Note that the dot product of a probability vector with another quantity 

is equivalent to the expectation operation. See section A.2.1 if this is not 

clear. Equation B.4 treats the outcomes as if they  were probability vectors, 

but with a one in the ele ment corresponding to the observed outcome and 

zeros elsewhere (sometimes called one- hot encoding or 1- in- k vector). The 

challenge now is to minimize the  free energy with re spect to our beliefs 

about states (sπτ) to ensure the  free energy becomes a good approximation 

to a marginal likelihood. We could do this as in section A.4.2 and minimize 

with re spect to each  factor of our beliefs one at a time, iterating through 

 until they converge. However, as we are interested in more biologically 

plausible schemes, we can instead construct a dynamical system that con-

verges on the same solution. This approach is known as a gradient descent, 

as we follow the  free energy gradients downward  until we arrive at the 

minimum.

To update beliefs about states, we take the gradient of this with re spect 

to current beliefs about states. We then define an auxiliary variable (v) that 

plays the role of the log posterior and set this to perform a gradient descent 

on the  free energy. This log posterior is then passed through a softmax 

function1 (σ ) to convert it to a normalized probability distribution. This 

pro cess ensures that beliefs about the states change such that they decrease 

 free energy.

sπτ = σ (vπτ )

v. πτ = −∇sπτ Fπ
∇sπτFπ = lnsπτ − lnA i oτ − lnBπτsπτ −1 − lnBπτ +1 i sπτ +1  

(B.5)

Equation B.5 has the same solution to the variational message passing 

scheme outlined in equation A.42. It allows for efficient computation of 
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posterior beliefs using only locally derived information (in this case, from 

sensory data, beliefs about the immediate past and beliefs about the imme-

diate  future). However, it is worth noting that the mean- field approxi-

mation used  here (factorization over time) often leads to overconfident 

posteriors. In practice, this may be countered using a modified scheme called 

marginal message passing (Friston, FitzGerald et al. 2017; Parr, Markovic 

et al. 2019):

v
.
πτ = επτ
επτ = lnA i oτ + 1

2 ln(Bπτsπτ −1)+ ln(Bπτ +1
† sπτ +1)( ) − lnsπτ

Bπτ
† ∝Bπτ

T
 

(B.6)

This leads to more conservative inferences, with greater uncertainty ascribed 

to posterior beliefs. Other alternatives have been explored, including the 

Bethe approximation (Schwöbel et al. 2018). However, at the time of writ-

ing, the most widely used implementation of Active Inference employs 

marginal message passing.

B.2.2 Planning as Inference

The above section deals with inference about states conditioned on some 

policy to minimize a  free energy conditioned on the policy. This  free energy 

plays the role of a negative log marginal likelihood (model evidence), wherein 

each policy is treated as a model. Equipping this with prior and posterior 

beliefs about the most likely policy, we can express the  free energy as a func-

tional of beliefs about policies.

F = EQ (π )[ lnQ(π ) − ln P(π , !o)]

≈ EQ (π )[ lnQ(π ) + F(π ) − ln P(π )]

P(π ) = Cat(πo )

Q(π ) = Cat(π)

πo = σ (lnE − G)  

(B.7)

The approximate equality in the second line comes from equation B.2. 

 Here, E is a vector of fixed beliefs about policies (this may be thought of as 

a bias, or habit, term), while G is the expected  free energy for each policy. 

As before, we can now write the  free energy in terms of sufficient statistics:

F   =  π · (ln π − ln E + F + G) (B.8)
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 Here, F is a vector whose ele ments are Fπ as defined in equation B.4. Taking the 

gradients, we find the optimal update for beliefs about policies (i.e., planning):

∇πF = 0 ⇔
π = σ (lnE − F − G)  

(B.9)

B.2.3 Learning

To enable learning, we need to incorporate prior beliefs about the par-

ameters of the probability distributions that comprise the generative 

model. As  these are expressed as categorical distributions, the appropriate 

(conjugate) choice of prior is a Dirichlet distribution. Taking the prior over 

initial states as an example, the terms in the  free energy that depend on the 

expected (log) prior include the following:

F = . . . + DKL[Q(D) || P(D)]− EQ (s1)Q (D)[ ln P(s1|D)]

= . . . + (d − d) i EQ (D)[ lnD]− s1 i EQ (D)[ lnD]

EQ (D)[ lnD]=ψ (d) −ψ (d0 )

d0 = dii∑
Q(D) ! Dir(d)

P(D) ! Dir(d)  

(B.10)

Equation B.10 highlights in the third equality a useful identity. The expec-

tation of the log of a Dirichlet distributed variable is the difference between 

two digamma functions (ψ )— where the digamma function is the derivative 

of a gamma function. We can use equation B.10 to find the  free energy 

minimum:

∇E[ lnD]F = d − d − s1 = 0 ⇔ d = d + s1  (B.11)

This gives a  simple scheme that may be used to update prior Dirichlet par-

ameters to their posterior values. Very similar update rules apply for the other 

probability distributions that comprise the generative model:

a = a + oτ ⊗sττ∑
bπτ = bπτ + sπτ ⊗sπτ −1τ∑
c = c + oττ∑
d = d + s1

e = e + π  

(B.12)

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



 These simply say that when the  thing predicted by the relevant term in the 

probability distribution comes to pass (which may be a combination of two 

 things for conditional probabilities), we simply augment that ele ment of 

the probability array to signal that it is more likely to happen again in the 

 future.

B.2.4 Precision

In some settings, it may be con ve nient to pa ram e terize the generative model 

in a slightly dif fer ent way. One option  here is to use a Gibbs mea sure, where 

probability distributions are equipped with an inverse temperature pa ram-

e ter that plays the role of a precision. Most commonly, this is done for the 

precision (γ ) over policies:

P(π |γ ) = Cat(π0 )

π0 = σ (−γG)  
(B.13)

For simplicity, we omit the E vector for this section. In what follows, we 

 will also consider a precision for the likelihood (ζ     ) and for transitions (ω ). 
The prior distribution over precision par ameters is assumed to be a gamma 

distribution:

P(ζ ) ∝ βζ exp −βζζ( )
P(ω ) ∝ βω exp −βωω( )
P(γ ) ∝ βγ exp −βγγ( )  

(B.14)

The approximate posterior distributions have the same (gamma distri-

bution) form, and we  will use a bold beta hyper- parameter to distinguish 

between the sufficient statistics of the posterior and prior above. A useful 

property of the gamma distribution, when pa ram e terized in this way, is the 

following:

ζ = EQ (ζ )[ζ ]= βζ
−1

ω = EQ (ω )[ω ]= βω
−1

γ = EQ (γ )[γ ]= βγ
−1  

(B.15)

Having defined  these distributions, we can write the variational  free energy:

F = EQ[F(π,ζ,ω ) + DKL[Q(π ) || P(π |γ )]]

+ DKL[Q(γ ) || P(γ )]+ DKL[Q(ω ) || P(ω )]+ DKL[Q(ζ ) || P(ζ )]  
(B.16)
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This can be expressed in terms of its sufficient statistics (omitting constants):

F = π i (F + ln π + γ i G + lnZ(γ )) + lnβγ + lnβω + lnβζ

− lnβγ − lnβω − lnβζ + γ βγ + ωβω + ζβζ

Fπ ≈ − sπτ i ζ lnA i oτ + ω lnBπτsπτ −1 − lnZ(ζ) i oτ − lnZ(ω)sπτ −1( )τ∑  

(B.17)

In equation B.17, Z represent partition functions (i.e., normalizing con-

stants) given by the following:

Z(ζ)j = Aij( )ζ
i∑

Z(ω)j = Bπτij( )ω
i∑

Z(γ ) = exp(−γ i Gπ )
π∑

⇒

∂ζ lnZ(ζ)sτ = oτ
ζ
i lnA

∂ω lnZ(ω)sπτ −1 = sπτω i lnBπ

∂γ lnZ(γ ) = −π0 i G

oτ
ζ
! σ (ζ lnA)sτ

sπτω ! σ (ω lnBπτ )sπτ −1

π0 ! σ (−γG)  

(B.18)

Taking the partial derivative2 with re spect to the expected precisions gives 

this:

∂ζ F

∂ω F
∂γ F

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
= 0 ⇔

βζ

βω

βγ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

(oτ
ζ − oτ )

τ∑ i lnA + βζ

π i (sπτω − sπτ )
τ∑ i lnBπsπτ −1 + βω

(π − π0 ) i G + βγ

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 

(B.19)

Expressing  these updates as biologically plausible gradient descents gives 

the resulting equations:

β
.
ζ

β
.
ω

β
.
γ

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

=

(oτ
ζ − oτ )

τ∑ i lnA + βζ − βζ

π i (sπτω − sπτ ) i lnBπsπτ −1τ∑ + βω − βω

(π − π0 ) i G + βγ − βγ

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪  

(B.20)

Note that the dimensionality implies a (row) vector of precisions for A, where 

each state (column of A) is associated with its own precision pa ram e ter.
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B.2.5 Expected  Free Energy

Expected  free energy is discussed extensively in the main text of the book. 

In this section, we supplement this discussion with two  things. First, we 

offer a brief outline of current thinking as to why this is the appropriate 

quantity to define prior beliefs about policies. Second, we touch on the 

implementational details for computing this quantity.

While numerical simulations (of the sort illustrated in chapter 7) have 

established that expected  free energy is useful, the question of why it is 

useful is still an active research area. Anticipating that this discussion  will 

continue to evolve,  here we set down a brief summary of the most parsi-

monious explanation at the time of writing (Da Costa et al. 2020; Friston, 

Da Costa et al. 2020). The starting point is to stipulate that a system attains 

some steady state (see section A.5.2) or, equivalently, fulfills its preferences 

(defined  here in relation to latent states) at some  future time (τ ):

Q(sτ ) = EQ (π ) Q(sτ |π )[ ] = P(sτ |C)  (B.21)

Our challenge is to find the Q(π) that satisfies equation B.21. To do so, 

we note that equation B.21 implies the following:

DKL Q(π | sτ )Q(sτ ) ||Q(π | sτ )P(sτ |C)[ ] = 0

⇒

EQ (π ,sτ ) lnQ(π ,sτ )[ ] = EQ (π ,sτ ) lnQ(π | sτ ) + ln P(sτ |C)[ ]  

(B.22)

We next factorize the left- hand side so as to isolate the Q(π ) term we are 

interested in:

EQ (π ) lnQ(π )[ ] = EQ (π ,sτ ) lnQ(π | sτ ) + ln P(sτ |C) − lnQ(sτ |π )[ ]  (B.23)

We define a variable α that represents the ratio of two entropies:

α =
EQ (sτ ) H Q(π | sτ )[ ]⎡⎣ ⎤⎦
EQ (sτ ,π ) H P(oτ | sτ )[ ]⎡⎣ ⎤⎦  

(B.24)

Heuristically, α expresses the relative range of behavioral outputs (i.e., poli-

cies) that are plausible in a given state, compared to the range of outcomes 

expected in that same state. If very large, this might describe a creature 

whose be hav ior bears  little relationship to the state of their world, despite 

highly precise sensory observations being generated by that world. When 

very small, this might describe a creature who always behaves the same way 
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when it knows the state of the world but is rarely offered precise data about 

that world.  Here, we  will stipulate that we are interested in systems whose 

α  =  1— implying a relatively balanced and symmetrical exchange with their 

world. This renders the two entropies in equation B.24 equal. Returning to 

equation B.23:

EQ (π ) lnQ(π )[ ] = −EQ (sτ ) H Q(π | sτ )[ ]⎡⎣ ⎤⎦
+ EQ (π ,sτ ) ln P(sτ |C) − lnQ(sτ |π )[ ]

= −EQ (sτ ,π ) H P(oτ | sτ )[ ]⎡⎣ ⎤⎦
− EQ (π ) DKL Q(sτ |π ) || P(sτ |C)[ ]⎡⎣ ⎤⎦  

( B.25 )

The second line follows from the first and from equation B.24 with α  =  1. 

We now see that equation B.25, and therefore equation B.21, is satisfied by 

choosing the following:

lnQ(π ) = −EQ (sτ |π ) H P(oτ | sτ )[ ]⎡⎣ ⎤⎦
Expected ambiguity

! "#### $####
− DKL Q(sτ |π ) || P(sτ |C)[ ]

Risk
! "#### $####

 
(B.26)

Our final step is to note the relationship between the quantity on the 

right- hand side and the expected  free energy— with preferences defined in 

terms of observations in place of states:

EQ (sτ |π ) H P(oτ |sτ )[ ]⎡⎣ ⎤⎦ + DKL Q(sτ |π ) || P(sτ |C)[ ]
= EQ (sτ |π ) H P(oτ |sτ )[ ]⎡⎣ ⎤⎦ + DKL Q(sτ |π ) || P(sτ |C)[ ]
+ EQ (sτ |π )P(oτ |sτ ) ln P(oτ |sτ )[ ] − EQ (sτ |π )P(oτ |sτ ) ln P(oτ |sτ )[ ]

=0
! "########### $###########

= EQ (sτ |π ) H P(oτ |sτ )[ ]⎡⎣ ⎤⎦ + DKL Q(oτ ,sτ |π ) || P(oτ ,sτ |C)[ ]
= EQ (sτ |π ) H P(oτ |sτ )[ ]⎡⎣ ⎤⎦ + DKL Q(oτ |π ) || P(oτ |C)[ ]
+ EQ (oτ |π ) DKL Q(sτ |oτ ,π ) || P(sτ |oτ ,C)[ ]⎡⎣ ⎤⎦

≥ EQ (sτ |π ) H P(oτ |sτ )[ ]⎡⎣ ⎤⎦ + DKL Q(oτ |π ) || P(oτ |C)[ ] =G(π )
 

(B.27)

The steps in equation B.27 have (perhaps a  little tediously) been included in 

some detail as our experience is that  people often strug gle with this result. 

The in equality in the final line arises from the omission of the (nonnega-

tive) KL- Divergence in the previous line. The key result  here is that the 

ambiguity and risk minimized for the most plausible policies in equation 

B.26 acts as an upper bound on the expected  free energy used throughout 

this book.
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We now turn to the question of computational implementation.  Here we 

can simply appeal to the linear algebraic identities we saw in section A.2. It 

is straightforward, if we express preferences as a vector of prior probabilities 

(C), to express the pragmatic term of the expected  free energy as follows:

EQ (oτ |π ) ln P(oτ |C)[ ] = oπτ i lnCτ

Q oτ |π( ) = Cat(oπτ )

oπτ = Asπτ  

(B.28)

The expected information gain associated with hidden states (i.e., salience, 

epistemic value, or Bayesian surprise) is expressed in terms of the difference 

between two entropies:

H[Q(oτ |π )]− EQ (sτ |π )[H[P(oτ |sτ )]]

= −oπ i lnoπ −H i sπτ
H ! −diag(A i lnA)  

(B.29)

See Section A.2.3 for an explanation of the last line. Putting equations B.28 

and B.29 together, the expected  free energy is this:

Gπ = Gπττ∑
Gπτ =H i sπτ + oπτ i lnoπτ − lnCτ( )  

(B.30)

When we need to account for active learning, we supplement this 

with pa ram e ter information gain. The information gain associated with 

par ameters of the generative model (i.e., novelty) may be derived as fol-

lows. Using the KL- Divergence between two Dirichlet distributions, we 

can express the information gain that would occur following a given state- 

outcome combination:

Wij ! DKL[P(Aij |o = i,s = j) || P(Aij )]

= lnΓ(aij ) − lnΓ(aij + 1)( )
−lnaij

! "#### $####
+ lnΓ(a0 j + 1) − lnΓ(a0 j )( )

+ lna0 j

! "#### $####

+ψ (aij + 1) −ψ (a0 j + 1)

a0 j ! aiji∑  

(B.31)

 Here we have used the fact that if we knew a given state- outcome combina-

tion had occurred, we would add 1 to the associated Dirichlet pa ram e ter. 

This lets us use a standard identity of a log gamma function (as indicated 

by the underbraces) to simplify the expression:
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Wij = ln
a0 j

aij
+
∂aij Γ(aij + 1)

aijΓ(aij )
−
∂a0 j

Γ(a0 j + 1)

a0 jΓ(a0 j )

= ln
a0j

aij
+ 1
aij

+
∂aij Γ(aij )

Γ(aij )
− 1
a0 j

−
∂a0 j

Γ(a0 j )

Γ(a0 j )  

(B.32)

 Here we have used the identity xΓ(x) = Γ(x +1) and an application of the 

product rule. We next use the identity ψ (x)Γ(x) = ∂xΓ(x) and the approxi-

mation ψ (x) ≈ ln x − (2x)−1 to simplify this:

= 1
aij

− 1
a0 j

+ ln
a0 j

aij
+ψ (aij ) −ψ (a0 j )

≈ 1
2aij

− 1
2a0 j  

(B.33)

The expected information gain is then as follows:

EQ (oτ ,sτ |π )[DKL[P(A |oτ ,sτ ) || P(A)]]≈ oπτ i Wsπτ  (B.34)

This  simple expression then augments the expected  free energy to ensure 

novelty- seeking be hav ior in addition to pragmatic and salient choices.

B.2.6 Bayesian Model Reduction

In chapter 7, we briefly touch on the idea of structure learning and model 

reduction. We take the opportunity to unpack the princi ples in a  little 

more depth  here. Bayesian model reduction is a technique used to com-

pare alternative models that differ only in their priors. Through Bayes’ 

theorem (see chapter 2), we can express the ratio of the joint probability of 

data ( y) and some par ameters (θ ) between two alternative models in two 

dif fer ent ways:

P(y,θ )
!P(y,θ )

= P(y |θ )P(θ )
!P(y |θ ) !P(θ )

= P(θ | y)P(y)
!P(θ | y) !P(y)  

(B.35)

If the only difference between the two models is the prior (i.e., P(y |θ ) = !P(y |θ )

P(y |θ ) = !P(y |θ )), then we can cancel the likelihood terms. On rearranging, this gives 

an expression for the posterior probability  under alternative (reduced) pri-

ors in terms of the posterior probability  under the original (full) priors:

!P(θ | y) = P(θ | y)P(y) !P(θ )
!P(y)P(θ )  

(B.36)
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Integrating both sides with re spect to the par ameters gives this:

1 = P(y)
!P(y)
EP(θ |y )

!P(θ )
P(θ )

⎡

⎣
⎢

⎤

⎦
⎥ ⇒

ln !P(y) = ln P(y) + lnEP(θ |y )

!P(θ )
P(θ )

⎡

⎣
⎢

⎤

⎦
⎥

 

(B.37)

Substituting back into equation B.36 gives this:

ln !P(θ | y) = ln P(θ | y) + ln !P(θ ) − ln P(θ ) − lnEP(θ |y )

!P(θ )
P(θ )

⎡

⎣
⎢

⎤

⎦
⎥

 
(B.38)

Together, equations B.37 and B.38 mean that we can find the model evi-

dence and posterior we would have got, had we used a given reduced prior, 

using the results from inverting a full model. We can reexpress  these equa-

tions in terms of the variational quantities introduced in chapter 4:

F[P(θ )]− F[ !P(θ )]= lnEQ (θ )

!P(θ )
P(θ )

⎡

⎣
⎢

⎤

⎦
⎥

ln !Q(θ ) = lnQ(θ ) + ln !P(θ ) − ln P(θ ) − lnEQ (θ )

!P(θ )
P(θ )

⎡

⎣
⎢

⎤

⎦
⎥

 

(B.39)

For reference, we offer the form of equation B.39  under two dif fer ent kinds 

of prior. The first is a normal distribution:3

P θ( ) = N (η,∑)

!P θ( ) = N ( !η,∑
∼

)

Q θ( ) = N (µ,C)

!Q θ( ) = N ( !µ, !C)

!C−1 = !P = P + !Π − Π

!µ = !C(Pµ + !Π !η − Πη)

ΔF = − 1
2 ln | !ΠP !CΣ | + 1

2 (µ i Pµ + !η i !Π !η − η i Πη − !µ i !P !µ)
 

(B.40)

Practically, this is used in the setting of mixed models, with a continuous 

and a categorical component. If each categorical outcome of the latter is 

associated with a continuous prior, we can efficiently evaluate the evidence 

for each of  these priors (and therefore categorical outcomes) without hav-

ing to invert each model in turn. See chapter 8 for an example.
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More often, in a purely POMDP setting, we may be interested in com-

paring hypotheses about Dirichlet prior distributions. This has been used 

to simulate pruning of ele ments in a probability matrix as a meta phor for 

synaptic pruning during sleep (Friston, Lin et al. 2017). The form of Bayes-

ian model reduction for Dirichlet distributions is as follows:

P θ( ) = Dir(a)

!P θ( ) = Dir( !a)

Q θ( ) = Dir(a)

!Q θ( ) = Dir( !a)

!a = a + !a − a

ΔF = lnΒ(a) − lnΒ( !a) + lnΒ( !a) − lnΒ(a)
 

(B.41)

In this expression, B denotes a beta function. Similar results can be derived 

for a range of distributions (see Friston, Parr, and Zeidman 2018), but nor-

mal and Dirichlet priors are the most commonly encountered in Active 

Inference.

B.3 (Active) Generalized Filtering

We now move from the categorical inferences  under a POMDP model to the 

continuous domain. This is where some of the preliminaries from appendix 

A  really start to pay off. We  will exploit the Laplace approximation and 

generalized coordinates of motion, both presented in section A.3. In addi-

tion, we  will need to construct precision matrices including dif fer ent  orders 

of generalized motion, as we saw in section A.5.2. From equations A.33 

and A.34 we can write the  free energy  under the Laplace approximation 

as follows:

F[q, !y]≈ − 1
2

ln 2π( )k !∑ − ln p( !y, !µ)

q( !x) = N ( !µ, !∑−1)

!∑−1 = −∇!x ∇!x ln p( !y, !x)( )T
!x= !µ

 

(B.42)

 Here we have expressed the  free energy, using the Laplace assumption, for 

a model defined in generalized coordinates.  Under the Laplace assumption, 

the only term in the first line that varies with μ is the last one. This is the 
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term expressing the generative model. Our next step is to specify the form 

of the generative model:

p( !y, !x, !v) = p( !y | !x, !v)p( !x | !v)p( !v)

p( !y | !x, !v) = N ( !g( !x, !v), !∏y )

p( !x | !v) = N (D i !f ( !x, !v), !∏x )

p( !v) = N ( !η, !∏x )

D !x = !f ( !x, !v) + !ω x

!y = !g( !x, !v) + !ω y  

(B.43)

Note we now have two hidden variables, x and v. The difference is that the 

former depends on an equation of motion ( f ), while the latter depends on 

a static prior. The D operator in the penultimate line is a matrix with ones 

above the leading diagonal. In generalized coordinates, this is equivalent 

to taking a temporal derivative, as each ele ment in the vector of temporal 

derivatives is shifted up by one. The generalized precisions are constructed 

as in section A.5.3. Substituting the quantities of equation B.43 into B.42, 

we have the following:

F[q, !y]= 1
2 !ε y i !∏ y !ε y
− ln p( !y | !µx , !µv )
! "# $#

+ 1
2 !εx i !∏x !εx
− ln p( !µx| !µv )
! "# $#

+ 1
2 !εv i !∏v !εv

− ln p( !µv )
! "# $#

%ε y ! "y − !g( !µx, !µv )

!εx ! D "µx − !f ( !µx, !µv )

!εv ! "µv − !η  

(B.44)

We have omitted all constants with re spect to μ. From equation B.44, we 

can find the gradients of the  free energy (using identities introduced in sec-

tion A.2.2):

∇!µx F[q, !y]= −∇!µx !g i
!∏ y !ε y + D i

!∏x !εx − ∇!µx
!f i !∏x !εx

∇!µv F[q, !y]= −∇!µv !g i
!∏ y !ε y − ∇!µv

!f i !∏x !εx + !∏v !εv  

(B.45)

We could now specify a gradient descent to find the values of μ that min-

imize  free energy. However, this would imply that when the  free energy is 

minimized, μ becomes static. Clearly this is suboptimal if we believe higher 

 orders of motion to be nonzero. To account for this, we can express a gradi-

ent descent in a moving frame of reference, such that when the  free energy 

is minimized, μ continues to move with velocity μ′:

256 Appendix B
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The Equations of Active Inference 257

µ
.
∼

x − D !µx = ∇!µx !g i
!∏ y !ε y − D i

!∏x !εx + ∇!µx
!f i !∏x !εx

µ
.
∼

v − D !µv = ∇!µv !g i
!∏ y !ε y + ∇!µv

!f i !∏ x !εx − !∏v !εv  

(B.46)

Equation B.46 specifies a predictive coding scheme, in which prediction 

errors drive updates in expectations, resolving  those errors.  These schemes 

may be extended to include multiple hierarchical levels by duplicating the 

equations of B.46 for an additional level but replacing y with v from the 

lower level:

µ
.
∼

x
(i) − D !µx

(i) = ∇
!µx
(i ) !g i !∏v

(i−1) !εv
(i−1) − D i

!∏x
(i) !εx(i) + ∇

!µx
(i )
!f (i)

i
!∏x

(i) !εx(i)

µ
.
∼

v
(i)− D !µv(i) = ∇

!µv
(i ) !g (i)

i
!∏v

(i−1) !εv
(i−1) + ∇

!µv
(i )
!f (i)

i
!∏x

(i) !εx(i) + !∏v
(i) !εv(i)

!εv(i) ! "µv(i) − !g (i+1)( !µx
(i+1), !µv

(i+1))

!εx(i) ! D !µx
(i) − !f (i)( !µx

(i), !µv(i) )
 

(B.47)

 Under Active Inference, the  free energy is minimized by perception but also 

by action. As the only  thing action changes is the sensory input ( y), most 

of the terms in equation B.44 are irrelevant for action. Minimizing the  free 

energy with re spect to action gives this:

u
. = −∇u !y(u) i !∏y !ε y  (B.48)

Together, equations B.47 and B.48 provide a very general description of 

Active Inference for continuous state- space models. We  will not discuss the 

issue of learning or mixed models in this section, as  these are summarized 

in boxes 8.2 and 8.3, respectively.
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C.1 Introduction

 Here we provide an annotated example of the Matlab code— using the 

standard inversion and plotting routines available in SPM12— required to 

specify and solve a generative model. This reproduces the T- maze forag-

ing example in chapter 7. This appendix, a  little dry on its own,  will be 

most useful for readers who attempt to implement this code in Matlab so 

that they can see it working. We recommend trying to “break” this demo 

by playing with dif fer ent pa ram e ter values and changing the generative 

model. Only by  doing this  will an intuitive sense of the mechanics of Active 

Inference develop.

C.2 Preliminaries

We assume that readers have some familiarity with Matlab and have suc-

cessfully downloaded the SPM12 software package from https:// www . fil . ion 

. ucl . ac . uk / spm / . The first step is to ensure that the folder containing the 

SPM12 functions is added to the Matlab path. We then open a Matlab script 

and begin writing our demo by defining a function and giving it a name 

( here, demo_AI_book):

Figure C.1

function demo_AI_book
rng default

The second line in figure C.1 sets the random number generator to a default 

initial seed so that the same random numbers are generated each time the 

Appendix C: An Annotated Example  
of the Matlab Code
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function is used. We normally do this for demos, as this ensures reproduc-

ibility. However, this can be omitted if we are instead  running this func-

tion multiple times to compute some summary statistics of be hav ior over 

multiple  trials. It is good practice to include some comments  here that tell 

 people about the script. Given that this appendix is devoted to annotation 

of this script, we omit this documentation  here.

Next, we define some of the impor tant constants we  will use  later. The 

advantage of listing  these together  here is that it is easy for us to find them 

in case we want to perturb them  later. We define two par ameters that  will 

play the role of probabilities, whose role  will become clear in section C.3 

(figure C.2):

Figure C.2

a =   .98;
b =   1 − a;

This definition ensures a + b   =  1. Now we are ready to set up the A, B, C, and 

D matrices and vectors that define a generative model. In this  simple simu-

lation, we assume  these par ameters are the same in the generative model 

and the generative pro cess.

C.3 The Likelihood

Our focus  here is on how to formalize a likelihood matrix in Matlab, so we 

 will not devote a  great deal of space to describing the generative model or 

the paradigm it describes. (This description is given in section 7.2.) Our 

aim is to translate the likelihood matrices of figures 7.4 and 7.5 into a lan-

guage that our inversion routines  will understand. We start with A1, which 

is written as A{1}, where the term inside curly { } brackets corresponds to 

the superscript (i.e., outcome modality); see figure C.3. The ele ments of the 

matrix (or tensor, more technically) are addressable using three indexes. 

 These are the outcome, the first (location) hidden state, and the second 

(context) hidden state.  These appear inside normal ( ) brackets. The matrix 

for the first level of the second hidden state  factor— the context in which 

the attractive stimulus is on the right—is then specified with a 1 index in 

260 Appendix C
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the third position. The context in which it is on the left is specified with a 

2 index in this position:

Figure C.3

A{1} (:, :, 1) = [...
 1 0 0 0; %   start
 0 0 0 0; %   left cue
 0 1 0 0; %   right cue
 0 0 1 0 %   left
 0 0 0 1]; %   right
A{1} (:, :, 2) = [...
 1 0 0 0; %   start
 0 1 0 0; %   left cue
 0 0 0 0; %   right cue
 0 0 1 0 %   left
 0 0 0 1]; %   right

The rows are the outcomes, and the columns are the alternative levels of 

the first hidden state  factor. Comparison with the matrices displayed in 

figures 7.4 and 7.5 should help clarify this syntax. The A2 matrices are simi-

larly defined for context.  Here, we make us of the a and b we defined at the 

top of the script (figure C.4):

Figure C.4

A{2} (:, :, 1) = [...
 1 1 0 0; % reward neutral
 0 0 a b; % reward positive
 0 0 b a]; % reward negative
A{2} (:, :, 2) = [...
 1 1 0 0; % reward neutral
 0 0 b a; % reward positive
 0 0 a b]; % reward negative

This completes our specification of A. We have probabilities defined for 

 every combination of outcome (rows) in two modalities (superscript or 

curly bracket) for each combination of values for two hidden state  factors 

(second and third indices).
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C.4 Transition Probabilities

Following A, we now specify B. As discussed in chapter 7, the superscript 

associated with the B matrix refers to the hidden state  factor, as opposed 

to the outcome modalities indicated by the superscript for A; again, we 

use curly brackets as equivalent to the superscript (figure C.5). Recall the 

two  factors are location (1) and context (2). Each matrix maps from the 

state at the previous time (column) to the current time (row). The B matri-

ces can vary with each action if the state  factor is controllable. This means 

that control states require an additional index specifying which action is 

taken:

Figure C.5

B{1}(:, :, 1)  =  [1 1 0 0; 0 0 0 0;0 0 1 0;0 0 0 1];
B{1}(:, :, 2)  =  [0 0 0 0; 1 1 0 0;0 0 1 0;0 0 0 1];
B{1}(:, :, 3)  =  [0 0 0 0; 0 0 0 0;1 1 1 0;0 0 0 1];
B{1}(:, :, 4)  =  [0 0 0 0; 0 0 0 0;0 0 1 0;1 1 0 1];

B{2}  =  eye(2);

 Here we have specified the controllable location state with each of the four 

actions available. Recall that  there are four available actions, each deter-

mining a transition to one of the four locations. The right and left arms 

are absorbing states, meaning the rat must stay in  these once entered. The 

semicolons  here indicate the end of each row of the matrix. The contextual 

states are not  under the creature’s control, so we do not need to specify a 

dif fer ent set of transition probabilities for each action. We simply define 

a single identity matrix, denoted by eye in Matlab. This implements the 

specification in figure 7.6 and equation 7.5.

C.5 Prior Preferences and Initial States

Following B is C.  Here we return to a similar syntax as A: both superscripts 

and curly brackets pertain to the outcome modalities. In addition, we spec-

ify D as we did B: superscripts and curly brackets relate to hidden state 

 factors (figure C.6). The number of rows of C and D must correspond to the 

number of rows in the associated A and B matrices, respectively.

262 Appendix C
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Figure C.6

C{1}  = [−1 −1 −1;
 0  0  0;
 0  0  0;
 0  0  0;
 0  0  0];
c     = 6;
C{2}  = [ 0  0  0;
 c  c  c;
 −c −c −c];
D{1} = [1 0 0 0]’;
D{2} = [1 1]’/2;

The preferences are specified in the C matrices in terms of log probabili-

ties (which do not need to be normalized). A difference of six between two 

outcomes means the more probable outcome is exp(6) times more likely. 

Each row pertains to a dif fer ent outcome. Columns correspond to dif fer-

ent time steps. This allows for the possibility of time- varying preferences. 

If only one column is specified, it  will be assumed that preferences are the 

same at each time. The D vectors specified  here simply ascribe a probability 

to each state for the start of the trial. See equations 7.6 and 7.7 for compari-

son. Note that in Matlab, a transpose is denoted by ’.

C.6 The Policy Space

We specified the allowable actions implicitly through the B matrices. We 

could assume that the policies and actions are one and the same and that 

we select new policies  every time step. Alternatively, we can specify policies 

as sequences of actions. One way of thinking about this is that each policy 

tells us which B matrix (indicated by the third index) is in play at each time 

step. We do this through specifying an array, V (figure C.7):

Figure C.7

V(:, :, 1) = [1 1 1 1 3 4 2 2 2 2
 1 2 3 4 3 4 1 2 3 4];
V(:, :, 2) =   1;

The first index of V (i.e., the rows) represents the position in the action 

sequence. This means the first row is the first action and the second row 

is the second action. As actions cause transitions, a three- step model only 
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requires two actions. The second index (i.e., the columns) represents the 

alternative policies that could be chosen. Fi nally, the third index is the hid-

den state  factor. To aid intuition, V(2,5,1) = 3 means that the fifth policy 

option involves selecting the location B1 matrix associated with the third 

action to transition from the second to the third time step. While in  simple 

simulations one may include all pos si ble policies, in other cases one may 

select a subset. Note, however, that the se lection of the available policies 

is a design choice in itself and has implications for the resulting be hav ior.

C.7 Putting It Together

Having specified our POMDP, we now bring it all together in a single mdp 

variable (figure C.8):

Figure C.8

mdp. V = V; % allowable policies
mdp. A = A; % observation model
mdp. B = B; % transition probabilities
mdp. C = C; % preferred outcomes
mdp. D = D; % prior over initial states
mdp. S = [1 1]'; % true initial state

The final line  here lets us specify the true hidden states that we wish to start 

with. This information is not available to our simulated creature, who must 

infer states on the basis of the outcomes generated by  these states and its 

generative model (specified in the first five lines).

C.8 Simulation and Plotting

The heavy lifting is completed  behind the scenes by the spm_MDP_VB_X 

function, which implements the message passing and policy se lection 

described in chapters 4 and 7. In addition, it simulates the world our crea-

ture must contend with, including transitions between states and the gener-

ation of outcomes. We could have included many other options; for details, 

we refer readers to the documentation for this function in the Matlab script.

264 Appendix C
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Once we have simulated a trial, we often want to find some graphical 

repre sen ta tion of the results. Plots of the sort shown in figures 7.2 and 7.7 

can be automatically generated with standard plotting routines:

Figure C.9

MDP = spm_MDP_VB_X(mdp);
spm_figure(‘GetWin’, ‘Figure 1’); clf
spm_MDP_VB_trial(MDP);

spm_figure(‘GetWin’, ‘Figure 2’); clf
spm_MDP_VB_LFP(MDP,[],1);

spm_figure(‘GetWin’,‘Figure 3’); clf
spm_MDP_VB_LFP(MDP,[],2);

The lines of code in figure C.9  will simulate and plot the results in three fig-

ures. The first figure provides an overall summary of the simulation, includ-

ing states, outcomes, policies selected, and retrospective inferences. The 

second figure shows the electrophysiological correlates of belief updating 

for the first hidden state  factor; the third figure does the same for the second 

 factor. We have reproduced the outputs of the first lines of code in graphical 

form (figure C.10) to reassure you that every thing is working. We could have 

reproduced the other two; however, we wanted to give you the opportunity 

to engage in Active Inference and reduce your uncertainty about what the 

plots show by  running the script yourself.

This concludes the  simple annotated example, which we hope sets you 

on the path to exploring the range of generative models that can be speci-

fied using the same princi ples and syntax. You can find further examples 

by typing “DEM” into the Matlab command line and selecting demos from 

the resulting graphical user interface. The demo script we have provided is 

a simplified version of the routine used in Friston, FitzGerald et al. (2017). 

For further details, including learning of the generative model over mul-

tiple  trials, we refer you to that paper and to the DEM_demo_MDP_X.m script 

available in SPM12.
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Figure C.10
Output obtained from the spm_MDP_VB_trial routine. Upper left: Beliefs held about 

each of the hidden state  factors retrospectively (i.e.,  after all observations have been 

made). Black shading indicates a probability of one; white, of zero. Gray dots (which 

appear cyan when plotted in color)indicate the true states generated by the simu-

lated environment; we see that the simulated rat accurately and confidently infers its 

location ( Factor 1) and the context ( Factor 2).  Middle left: “Allowable policies” of the 

V variable specified in section C.6, showing a policy in each row: the first column is 

the first action taken; the second column, the second action. The dif fer ent shades in 

each ele ment represent dif fer ent actions that could be chosen. Lower left: True out-

comes (gray dots) in each modality. The background shading shows the C- matrices 

for each modality, with darker shades indicating preferred outcomes. Upper right: 

Inferred and selected actions.  Middle right: Beliefs about each policy for each time 

step. Bottom right: Inferred precision of beliefs about the policies (gray line) with the 

rate of change plotted as a bar plot, reminiscent of the raster plots used to illustrate 

dopaminergic neuron firing in electrophysiology. Note that the time is specified in 

terms of updates;  these refer to the iterations of a gradient descent on  free energy. By 

default,  there are sixteen updates per time step.

State 1(1)
Hidden states - factor 1

Factor 2

Allowable policies - factor 1

Outcomes and preferences - modality 1
Expected precision (dopamine)

Modality 2

Posterior probability

Action - factor 1

Act 1(1)

Act 2(1)

Act 3(1)

Act 4(1)

2

4

6

1

Outcome 1(1)
Outcome 2(1)
Outcome 3(1)
Outcome 4(1)
Outcome 5(1)

Outcome 1(2)

Outcome 2(2)

Outcome 3(2)

2

1 2
Time

3

10 20 30
Updates

40

10 20 30
Updates

40

8

10

1

0.8

0.6

0.4

0.2

0

State 2(1)

State 1(2)

State 2(2)

Po
lic

y

Po
lic

y
Pr

ec
is

io
n

State 3(1)
State 4(1)

Downloaded from http://direct.mit.edu/books/book-pdf/2107382/book_9780262369978.pdf by guest on 29 January 2024



Chapter 1

1.  The term normative means  there is some evaluative standard against which be hav-

ior can be scored. Active Inference is normative in the sense that perception and 

action are scored by  free energy— a quantity we  will unpack throughout this and the 

next chapters.

2.  Bayes optimality refers to a set of related concepts that deal with aspects of Bayes’ 

theorem— something we  will unpack in chapter 2. Broadly, it refers to any action 

that minimizes (or maximizes) the expected value of some cost (or utility) func-

tion given some observation. This encompasses Bayes- optimal experimental design, 

wherein an experiment (action) is chosen to maximize expected information gain.

Chapter 2

1.  Like bits, nats are units of information. The choice of unit depends on  whether 

we use a logarithm to the base 2 (bits) or a natu ral logarithm (nats).

2.  Support is a technical term referring to the pos si ble arguments for a distribution. 

For example, the support of a categorical probability distribution is a series of alter-

native states (i.e., event space) whose probability may be quantified. The support of 

a univariate normal distribution is the entire real number line.

3.  The details of this  table are not impor tant for understanding Active Inference con-

ceptually, but for interested readers, we briefly unpack the key points. The Support 

column tells us the set of variables whose surprise can be quantified using each distri-

bution. This is the set of real numbers for the Gaussian distribution. For the multino-

mial distribution, the support comprises a group of K variables, each taking an integer 

value up to a maximum N,  under the constraint that all ele ments in that group sum 

to N. For the Dirichlet distribution, the support includes any group of K real numbers 

between 0 and 1, where all ele ments in the group sum to 1. The gamma distribution 

quantifies the surprise of nonnegative real numbers. The Surprise column shows the 

Notes
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268 Notes

way in which the surprise can be calculated. This depends on constants (in addition 

to the random variable x) that control the shape of the under lying distribution.

4.  Interestingly, resource limitations are not the only barrier to exact Bayesian 

inference. In the presence of complex models, exact inference may be analytically 

intractable, such that no additional resources could help solve the exact prob lem.

5.  Like the KL- Divergence, entropy is a quantity from information theory. It is a 

mea sure of the dispersion (or uncertainty) of a probability distribution. Technically, 

it is the average of the negative log probability or average surprise.

6.  Complexity as used  here scores the degree to which we must depart from our prior 

beliefs about the world in order to explain data.

7.  This is referred to as accuracy  because an explanation’s accuracy increases when 

a high log probability of outcomes, expected  under the inferred hidden states, is 

assigned to observed data— i.e., when the predicted distribution of outcomes accu-

rately captures the mea sured distribution.

Chapter 3

1.  Nonequilibrium  here refers to the absence of detailed balance. Detailed balance is 

the invariance of a system  under time reversal once it has reached steady state. We 

can see that the system on the left of figure 3.3 does not possess detailed balance, as 

the trajectory tends to curve counterclockwise around the contours of surprise. If we 

 were to play this back in reverse, the system would appear to rotate clockwise.

2.  This is not the same as saying that surprise- minimizing systems must minimize 

their entropy. As we see in figure 3.3, the system does not tend  toward an infinitely 

precise (point) distribution that would minimize entropy, but it maintains a consis-

tent dispersion over time— bounding entropy from above and below.

3.  The capital A is used to distinguish Action as a path integral of a Lagrangian from 

action as the dynamics of active states of a Markov blanket.

4.  A Lagrangian is a function of a position and velocity that gives the difference 

between kinetic and potential energies. A Hamiltonian is related to (via a Legendre 

transform) and expresses the total energy of the system in terms of position and 

momentum.

Chapter 4

1.   Here and throughout the chapter, the conditioning on the model is left implicit; 

hence, the model evidence is written as P( y) and not P( y | m).

2.  Technically, this is true for any concave function, but we are concerned only 

with logarithms  here.
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Notes 269

3.  An expectation is a weighted sum or integral of the term inside the square brack-

ets; each term is weighted by the probability indicated by the subscript (see box 2.2).

4.  In this book, we follow the physicist’s convention in which the  free energy is an 

upper bound on the negative log evidence. However, other disciplines (including 

statistics and machine learning) use the negative  free energy as an evidence lower 

bound (or ELBO).  These are completely equivalent but can cause some confusion in 

interdisciplinary research.

5.  MAP estimates are the most probable states considering prior beliefs and the data 

available; contrast this with maximum likelihood approaches which do not take prior 

beliefs into account.

Chapter 5

1.  This nomenclature comes from reinforcement learning theories (Daw et al. 2005) 

but is slightly misleading as both systems depend on models. “Model- free” systems 

just use a simpler model that predicts a certain kind of be hav ior in a certain kind of 

environment.

Chapter 6

1.  This does not imply discrete temporal dynamics from a neural perspective. Instead, 

continuous neural dynamics are seen as representing (continuous) changes in beliefs 

about (discrete) sequences of events.

2.  Having said this, the use of generalized coordinates of motion (box 4.2) in 

continuous- time models means that they are temporally deep in virtue of their 

implicit repre sen ta tion of a short trajectory. However,  these models do not (neces-

sarily) include variables representing alternative trajectories one could pursue (i.e., 

the consequences of sequences of actions).

3.  Do not confuse temporally deep models with hierarchical models. Unlike tem-

porally deep models, some hierarchical models (e.g., predictive coding models; see 

section 4.4.1) only consider pre sent observations. However, generative models can 

be both hierarchical and temporally deep to afford multiscale planning.

Chapter 8

1.  Often it is necessary to add damping terms to account for friction and/or viscos-

ity to preclude oscillatory solutions.
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Chapter 9

1.  Practically, it is often useful to define par ameters as log scaling par ameters: the 

pa ram e ter acts as a nonnegative scaling  factor and cannot be characterized by a 

normal distribution, which allocates negative numbers a finite probability density. 

Assuming instead that the log of the scaling pa ram e ter is normally distributed 

ensures positivity when exponentiated to get the scaling pa ram e ter itself. The same 

aim may be achieved by modeling the square root of a pa ram e ter as being normally 

distributed.

2.  For example, ∂x f (x) ≈ 1
2Δx f (x + Δx) − f (x − Δx)( ).

Chapter 10

1.  From a more pragmatic viewpoint, Active Inference only requires the acquisition 

of forward models, which are (typically) easier to learn compared to inverse models 

 because they are simply a direct (observable) mapping between actions and conse-

quences. Forward models can also be acquired by imitation or external supervision— a 

technique largely analogous to Active Inference that is widely used to train robotic 

models (Nishimoto and Tani 2009).

2.  In machine learning, the pro cess of optimizing sequences of actions is sometimes 

called sequential policy optimization—as opposed to the more usual optimization of state- 

action policies— namely, “If I am in this state, what do I do?”

3.  The notion of deploying cognitive resources efficiently is an inherent part of  free 

energy minimization  because minimizing complexity automatically maximizes effi-

ciency, in both an information theoretic and thermodynamic sense. Put simply, the 

path of least re sis tance is the path of least  free energy.

Appendix A

1.  Tensors are a generalization of the concepts of scalars, vectors, and matrices. Heu-

ristically, we can think of  these as arrays whose ele ments are addressable by a certain 

number of indices. For a vector, we need only a single (row) argument to specify an 

ele ment. This makes it a first order tensor. For a matrix, we need to specify a column 

and a row, making it a second order tensor. Scalars need no indices to specify an 

ele ment, so are 0 order.

2.  This uses the identity ∂A ln | A |   =  A−1.

3.  In the context of variational inference, the integral is typically an expectation.

4.  This is sometimes referred to as the fundamental lemma of variational calculus.

5.  This uses the chain rule, as applied to the derivative of a log: ∂x ln f  ( x )  =  f  ( x )−1 ∂x f  ( x ).
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Appendix B

1.  A normalized exponential function.

2.  For concision, we have omitted some terms in the derivatives of the log partition 

functions. We are licensed to do so by the choice of variational distribution, as any 

higher order polynomial terms would violate the form of this distribution.

3.  The C  here is a covariance and should not be confused with a prior preference, 

despite the same notation in preceding sections.
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