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This routine provides solutions of active 
inference (minimisation of variational free 
energy) using a generative model based upon a 
Markov decision process (or hidden Markov 
model, in the absence of action). The model and 
inference scheme is formulated in discrete space 
and time. This means that the generative model 
(and process) are  finite state machines or 
hidden Markov models whose dynamics are 
given by transition probabilities among states 
and the likelihood corresponds to a particular
outcome conditioned upon hidden states.

When supplied with outcomes, in terms of their 
likelihood (O) in the absence of any policy 
specification, this scheme will use variational
message passing to optimise expectations about 
latent or hidden states (and likelihood (A) and 
prior (B) probabilities). In other words, it will
invert a hidden Markov model. When  called 
with policies, it will generate outcomes that are 
used to infer optimal policies for active
inference.
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This routine provides solutions of active 
inference (minimisation of variational free 
energy) using a generative model based upon a 
Markov decision process. The model and 
inference scheme is formulated in discrete space 
and time. This means that the generative model 
(and process) are hidden Markov models whose 
dynamics are given by transition probabilities 
among states and the likelihood corresponds to 
a particular outcome conditioned upon hidden 
states.
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This implementation equips agents with the 
prior beliefs that they wil maximise expected 
free energy: expected free energy is the free 
energy of future outcomes under the posterior 
predictive distribution. This can be interpreted 
in several ways - most intuitively as minimising 
the KL divergence between predicted and 
preferred outcomes (specified as prior
beliefs) - while simultaneously minimising 
ambiguity.
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This implementation equips agents with the 
prior beliefs that they will maximise expected 
free energy. Variational free energy can be 
interpreted in several ways - most intuitively as 
minimising the KL divergence between 
predicted and preferred outcomes (specified as 
prior beliefs) - while simultaneously minimising 
ambiguity.
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This implementation equips agents with the 
prior beliefs that they will maximise expected 
free energy. Expected free energy can be 
interpreted in several ways - most intuitively as 
minimising the KL divergence between
predicted and preferred outcomes (specified as 
prior beliefs) -i.e., risk while simultaneously 
minimising ambiguity. Alternatively, this can be
rearranged into expected information gain and 
expected value, where value is the log of prior 
preferences (overstates or outcomes).
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This particular scheme is designed for any 
allowable policies or control sequences 
specified in MDP.V. Constraints on allowable 
policies can limit the numerics or combinatorics 
considerably. Further, the outcome space
and hidden states can be defined in terms of 
factors; corresponding to sensory modalities and 
(functionally) segregated representations,
respectively. This means, for each factor or 
subset of hidden states there are corresponding 
control states that determine the transition
probabilities.
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This particular scheme is designed for any 
allowable policies or control variables specified 
in MDP.U. Constraints on allowable policies 
can limit the numerics or combinatorics 
considerably. Further, the outcome space
and hidden states can be defined in terms of 
factors; corresponding to sensory modalities and 
(functionally) segregated representations,
respectively. This means, for each factor or 
subset of hidden states there are corresponding 
control states that determine the transition
probabilities. in this implementation, hidden 
factors are combined using a Kronecker 
intensive product to enable exact Bayesian 
inference using belief propagation (the 
Kronecker tensor form ensures that conditional
dependencies among hidden factors are 
evaluated).
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This implementation generalises previous MDP 
based formulations of active inference by 
equipping each factor of latent states with a 
number of paths; some of which may be 
controllable and others not. Controllable
factors are now specified with indicator 
variables in the vector MDP.U. Furthermore, 
because the scheme uses sophisticated inference 
(i.e., a recursive tree search accumulating path 
integral is of expected free energy) a policy 
reduces to a particular combination of 
controllable paths or dynamics over factors. In 
consequence, posterior beliefs cover
latent states and paths; with their associated 
variational free energies. Furthermore, it is now 
necessary to specify the initial states and the
initial paths using D and E respectively. In other 
words, he now plays the role of a prior over the 
path of each factor that can only be changed
if it is controllable (it no longer corresponds to a 
prior over policies).
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This specification simplifies the generative 
model, allowing a fairly exhaustive model of 
potential outcomes. 

In brief, the agent encodes beliefs about hidden 
states in the past (and in the future) conditioned 
on each policy. The conditional expectations 
determine the (path integral) of free energy that 
then determines the prior over policies. This 
prior is used to create a predictive distribution 
over outcomes, which specifies the next action.
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In this belief propagation scheme, the next 
action is evaluated in terms of the free energy 
expected under all subsequent actions until 
some time horizon (specified by MDP.T). This 
expected free energy is accumulated along all 
allowable paths or policies (see the subroutine 
spm_forward); effectively, performing a deep 
tree search over future sequences of actions. 
Because actions are conditionally independent 
of previous actions, it is only necessary to 
update posterior beliefs over hidden states at the 
current time point (using a Bayesian belief 
updating) and then use the prior over actions 
(based upon expected free energy) to select the 
next action. Previous actions are realised 
variables and are used when evaluating the 
posterior beliefs over current states.

In brief, the agent encodes beliefs about hidden 
states in the past conditioned on realised 
outcomes and actions. The resulting conditional
expectations determine the (path integral) of 
free energy that then determines an empirical 
prior over the next action, from which the next
realised action sampled
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In this belief propagation scheme, the next 
action is evaluated in terms of the free energy 
expected under all subsequent actions until 
some time horizon (specified by MDP.T). This 
expected free energy is accumulated along all 
allowable paths or policies (see the subroutine 
spm_forward); effectively, performing a deep 
tree search over future sequences of actions. 
Because actions are conditionally independent 
of previous actions, it is only necessary to 
update posterior beliefs over hidden states at the 
current time point (using a Bayesian belief 
updating) and then use the prior over actions 
(based upon expected free energy) to select the 
next action. Previous actions are inferred under 
the posterior beliefs over current states; i.e., 
inferred state transitions.

In brief, the agent encodes beliefs about hidden 
states in the past conditioned on realised 
outcomes and actions. The resulting conditional
expectations determine the (path integral) of 
free energy that then determines an empirical 
prior over the next action, from which the next
realised action sampled
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In addition to state estimation and policy 
selection, the scheme also updates model 
parameters; including the state transition 
matrices, mapping to outcomes and the initial 
state. This is useful for learning the context. 
Likelihood and prior probabilities can be 
specified in terms of concentration parameters 
(of a Dirichlet distribution (a,b,c,..). If the 
corresponding (A,B,C,..) are supplied, they will 
be used to generate outcomes; unless called 
without policies (in hidden Markov model 
mode). In this case, the (A,B,C,..) are treated as 
posterior estimates.

If supplied with a structure array, this routine 
will automatically step through the implicit 
sequence of epochs (implicit in the number of 
columns of the array). If the array has multiple 
rows, each row will be treated as a separate 
model or agent. This enables agents to 
communicate through acting upon a common 
set of hidden factors, or indeed sharing the same 
outcomes.
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In addition to state and path estimation (and 
policy selection), the scheme also updates 
model parameters; including the state transition
matrices, mapping to outcomes and the initial 
state. This is useful for learning the context. 
Likelihood and prior probabilities can be 
specified in terms of concentration parameters 
(of a Dirichlet distribution (a,b,c,...). If the 
corresponding (A,B,C,...) are supplied, they will 
be used to generate outcomes.

If supplied with a structure array, this routine 
will automatically step through the implicit 
sequence of epochs (implicit in the number of 
columns of the array). If the array has multiple 
rows, each row will be treated as a separate 
model or agent. This enables agents to 
communicate through acting upon a common 
set of hidden factors, or indeed sharing the same 
outcomes.
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This scheme allows for differences in the functional 
form of priors – specified in terms of probability 
transition tensors – between the generating process 
and generative model. The generative model is, by 
default, specified in terms of Dirichlet parameters, 
while the generative process is specified in terms of 
expected (likelihood and prior transition) 
probabilities: b and B, respectively. If the number or 
dimensionality of b and B do not correspond, then 
select OPTIONS.A = 1. This will automatically 
evaluate the most likely policy (combination of 
controllable paths) to reproduce the predicted 
outcomes (i.e. that which minimises variational free 
energy or maximises accuracy); as opposed to using 
the path selected by the model.

scheme is designed for any allowable policies or 
control variables specified in MDP.U. Constraints on 
allowable policies can limit the numerics or 
combinatorics considerably. Further, the outcome 
space and hidden states can be defined in terms of 
factors; corresponding to sensory modalities and 
(functionally) segregated representations,
respectively. This means, for each factor or subset of 
hidden states there are corresponding control states 
that determine the transition probabilities. in this 
implementation, hidden factors are combined using 
a Kronecker intensive product to enable exact 
Bayesian inference using belief propagation (the 
Kronecker tensor form ensures that conditional 
dependencies among hidden factors are evaluated).
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See also: spm_MDP, which uses multiple future 
states and a mean field approximation for 
control states - but allows for different actions at
all times (as in control problems).

See also: spm_MDP_game_KL, which uses a 
very similar formulation but just maximises the 
KL divergence between the posterior predictive 
distribution over hidden states and those 
specified by preferences or prior beliefs.
______________________________________
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 See also: spm_MDP, which uses multiple future 
states and a mean field approximation for 
control states - but allows for different actions at 
all times (as in control problems).

 See also: spm_MDP_VB_X,  which is the 
corresponding variational message passing 
scheme for fixed policies; i.e., ordered 
sequences of actions that are specified a priori.

 See also: spm_MDP_VB_XX,  which is the 
corresponding variational message passing 
scheme for sophisticated policy searches under 
the assumption that the generative process and 
model have the same structure
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